地表堆载作用下双圆盾构隧道破坏机制试验研究

    柳献, 刘震, 李家平, 王如路

    柳献, 刘震, 李家平, 王如路. 地表堆载作用下双圆盾构隧道破坏机制试验研究[J]. 岩土工程学报, 2025, 47(3): 487-494. DOI: 10.11779/CJGE20231174
    引用本文: 柳献, 刘震, 李家平, 王如路. 地表堆载作用下双圆盾构隧道破坏机制试验研究[J]. 岩土工程学报, 2025, 47(3): 487-494. DOI: 10.11779/CJGE20231174
    LIU Xian, LIU Zhen, LI Jiaping, WANG Rulu. Experimental investigations on failure mechanisms of DOT shield tunnel subjected to extreme surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 487-494. DOI: 10.11779/CJGE20231174
    Citation: LIU Xian, LIU Zhen, LI Jiaping, WANG Rulu. Experimental investigations on failure mechanisms of DOT shield tunnel subjected to extreme surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 487-494. DOI: 10.11779/CJGE20231174

    地表堆载作用下双圆盾构隧道破坏机制试验研究  English Version

    基金项目: 

    国家自然科学基金项目 52078376

    详细信息
      作者简介:

      柳献(1977—),男,博士,教授,主要从事隧道及地下结构服役行为、相关机理与性态控制方面的研究工作。E-mail: xian.liu@tongji.edu.cn

      通讯作者:

      刘震, E-mail: 1hugospace@tongji.edu.cn

    • 中图分类号: U451.5

    Experimental investigations on failure mechanisms of DOT shield tunnel subjected to extreme surface surcharge

    • 摘要: 盾构隧道在服役期间,易受周边工程活动影响导致较大的变形或内力响应。为研究双圆盾构隧道在周边环境扰动下的结构鲁棒性能,为隧道运维提供理论依据,设计并开展了双圆盾构隧道原型结构破坏性试验,采用拟静力试验方法模拟了隧道结构在地表堆载意外作用下的外部荷载状态。基于对试验过程中结构和接头的变形响应演化分析,揭示了双圆盾构隧道结构的破坏机制。研究结果表明,双圆盾构隧道结构在地表堆载意外工况下呈现典型初始线性、塑性损伤快速累积和整体失稳3个阶段。当长轴收敛变形达到25 mm左右时,6号、8号和3号负弯矩接头依次进入弹塑性阶段,结构整体亦进入塑性损伤快速累积阶段(第二阶段)。当左半环底部7号正弯矩接头外弧面混凝土压溃,内弧面铸铁手孔板开裂后,结构基本进入整体失稳阶段(第三阶段)。最终随着左半环上角部B7管片本体受弯破坏,结构彻底丧失承载能力。结构鲁棒性评价表明,双圆盾构隧道相比类矩形盾构隧道更好地利用了圆形隧道的优良受力性能,整体鲁棒性评价指标也更高。研究进一步建立了结构整体收敛变形和接头转角、接头张开量的相互关系,发现受结构、接头构造及材料性能影响,双圆盾构隧道结构在地表堆载意外工况下初期变形主要来源于3号、6号和8号负弯矩接头,在第二阶段后期随着内力重分布,7号正弯矩接头迅速达到线性极限,并进入塑性状态,导致结构左半环收敛变形快速发展。根据结构及接头受力机制,实际隧道运维期间重点监测的关键部位应包含结构长短轴收敛变形、腰部及小海鸥块侧负弯矩接头内弧面压碎及正弯矩接头内弧面张开情况。
      Abstract: During the service lifespan of shield tunnels, the surrounding construction activities are easy to cause significant structural responses. To explore the structural robustness of double-o-tube (DOT) shield tunnels in the face of environmental disturbances and to provide a guidance for tunnel operation and maintenance, a failure test is designed and conducted on a prototype DOT shield tunnel structure. In this test, a quasi-static method is utilized to simulate the external loading conditions of the tunnel structures subjected to the extreme surface surcharge. Through an analysis of the evolution of deformation responses of the structures and longitudinal joints during the tests, the failure mechanisms of the DOT tunnel structures are revealed. The tests indicate that the failure process of the DOT tunnel subjected to the extreme surface surcharge can be divided into three typical stages: initial linear stage, rapid accumulation of plastic damage stage, and instability stage. As the convergence deformation of the long axis (from the left waist to the right waist) approaches approximately 25 mm, three negative moment joints (No. 6, No. 8, and No. 3) enter the elastoplastic state, and the structures simultaneously enter the second stage (rapid accumulation of plastic damage stage). Subsequently, with the extrados concrete of the No.7 positive moment joint being crushed and the intrados cast iron plate of that joint being fractured, the structures enter the third stage (instability stage). Ultimately, with the bending failure of the B7 block (segment), the structures completely lose their bearing capacity. The structural robustness evaluation indicates that the DOT tunnel, compared to the quasi-rectangular tunnel, better utilizes the good load-bearing performance of circular tunnels, resulting in a higher robustness performance. The relationships between the structural convergence deformation and the joint rotation angles as well as the joint opening deformations are also investigated. It is found that the structural deformation at the first stage mainly comes from three negative moment joints (No. 3, No. 6, and No. 8). Near the end of the second stage, with the redistribution of internal forces, the No.7 positive moment joint quickly reaches the linear limit and enters the plastic state, causing a rapid development of the structural convergence deformation. Based on these findings, the critical monitoring locations during the service lifespan of tunnels should include the structural convergence deformations of the long and short axes, as well as the crushing of intrados concrete of negative moment joints at the waist and the side of the small seagull block, and intrados opening of positive moment joints.
    • 图  1   双圆盾构隧道试件分块及尺寸图

      Figure  1.   Schematic diagram of DOT tunnel specimen

      图  2   环向接头(纵缝接头)布置图

      Figure  2.   Configurations of longitudinal joint

      图  3   试验加载方案

      Figure  3.   Loading procedure of failure tests

      图  4   结构最终状态及薄弱点分布

      Figure  4.   Final state of specimen and distribution of weak parts

      图  5   左半环接头破坏状态

      Figure  5.   Failure states of joints at left half-ring

      图  6   7号、8号接头预埋铸铁手孔盒破坏状态

      Figure  6.   Failure states of cast iron hand hole boxes of No.7 and No.8 joints

      图  7   右半环接头破坏状态

      Figure  7.   Failure states of joints at right half-ring

      图  8   B7块管片本体破坏状态

      Figure  8.   Failure state of B7 block (segment)

      图  9   结构长轴收敛变形发展及特征点出现过程

      Figure  9.   Development of convergence deformation of long axis and emergence process of characteristic points

      图  10   接头转角发展

      Figure  10.   Development of joint rotation angles

      图  11   长轴收敛变形与接头转角相关性

      Figure  11.   Relationship between convergence deformation of long axis and joint rotation angles

      表  1   双圆盾构隧道、类矩形盾构隧道鲁棒性指标对比

      Table  1   Comparison of robustness indices between DOT tunnel and quasi-rectangular tunnel

      鲁棒性指标 双圆盾构隧道 类矩形盾构隧道
      超载系数K 4.75 3.54
      变形系数D 25.61 28.75
      延性系数μ 5.24 3.05
      消能能力I 299.03 162.12
      下载: 导出CSV

      表  2   不同工况、特征点下长轴收敛变形和接头张开量

      Table  2   Convergence deformations of long axis and opening deformations of joints under different conditions and characteristic points  单位:mm

      特征点 长轴收敛 接头3张开 接头6张开 接头7张开 接头8张开
      10 m埋深 5.14 0.51 0.31 0.25 0.43
      17 m埋深 8.80 0.79 0.76 0.42 0.81
      被动土压点 19.12 1.32 1.99 0.78 1.67
      A 25.09 1.32 2.68 0.87 2.28
      B 51.03 2.38 4.93 1.33 5.51
      C 72.88 3.46 7.53 1.62 7.86
      D 111.79 5.30 12.44 3.25 13.29
      E 131.52 5.45 13.97 7.82 17.85
      下载: 导出CSV
    • [1] 狄永媚, 杨志豪, 袁金荣, 等. 上海市轨道交通双圆区间隧道衬砌圆环设计探讨[J]. 地下工程与隧道, 2004(3): 11-14, 56.

      DI Yongmei, YANG Zhihao, YUAN Jinrong, et al. Lining ring design of DOT running tunnel section of Shanghai rail transit Yangpu line[J]. Underground Engineering and Tunnels, 2004(3): 11-14, 56. (in Chinese)

      [2] 沈秀芳, 杨志豪, 陈海龙, 等. 双圆(DOT)盾构法隧道综合技术应用研究[J]. 上海建设科技, 2005(5): 5-7, 17. doi: 10.3969/j.issn.1005-6637.2005.05.003

      SHEN Xiufang, YANG Zhihao, CHEN Hailong, et al. Research on application of comprehensive technologies for tunnel constructed with DOT tunneling method[J]. Shanghai Coustruction Science and Technology, 2005(5): 5-7, 17. (in Chinese) doi: 10.3969/j.issn.1005-6637.2005.05.003

      [3]

      CHOW B. Double-O-tube shield tunneling technology in the Shanghai Rail Transit Project[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 594-601. doi: 10.1016/j.tust.2005.11.003

      [4]

      WEI Z. Simplified method for evaluating mechanical interactions between tunnel and soil due to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2023, 139: 105205. doi: 10.1016/j.tust.2023.105205

      [5]

      WEI G, ZHANG S M, XIANG P F. Model test study on the influence of ground surcharges on the deformation of shield tunnels[J]. Symmetry, 2021, 13(9): 1565. doi: 10.3390/sym13091565

      [6] 王如路, 宋博, 王祺, 等. 双圆盾构隧道衬砌错缝拼装整环试验及结构分析[J]. 地下工程与隧道, 2001(1): 12-15, 21, 47.

      WANG Rulu, SONG Bo, WANG Qi, et al. Lining experiment and structure analysis of bi-circular shield tunnel with staggered joint splice on segments[J]. Underground Engineering and Tunnels, 2001(1): 12-15, 21, 47. (in Chinese)

      [7] 宋博. 双圆盾构隧道衬砌结构及施工技术研究[D]. 上海: 同济大学, 2003.

      SONG Bo. Research on Lining Structure and Construction Technology of DOT Shield Tunnel[D]. Shanghai: Tongji University, 2003. (in Chinese)

      [8] 杨国祥, 林家祥. 双圆盾构隧道管片大整环拼装加载试验及结构分析[C]// 中国土木工程学会. 2003上海国际隧道工程研讨会论文集, 上海, 2003: 173-179.

      YANG Guoxiang, LIN Jiaxiang. Loading test and structural analysis of large scale DOT shield tunnel linings[C]// China Civil Engineering Society. Proceedings of the 2003 Shanghai International Tunnel Engineering Symposium, Shanghai, 2003: 173-179. (in Chinese)

      [9] 郭智杰, 鲁亮, 刘祖华. 双圆盾构法隧道衬砌1∶1结构试验加载方法研究[J]. 结构工程师, 2004, 20(3): 64-71. doi: 10.3969/j.issn.1005-0159.2004.03.014

      GUO Zhijie, LU Liang, LIU Zuhua. Loading method of test for double-circular face shield-tunnel lining[J]. Structural Engineers, 2004, 20(3): 64-71. (in Chinese) doi: 10.3969/j.issn.1005-0159.2004.03.014

      [10] 周文波, 郑宜枫, 滕丽, 等. 双圆盾构隧道施工过程中管片力学性状的原位测试研究[J]. 力学季刊, 2005, 23(6): 59-463.

      ZHOU Wenbo, ZHENG Yifeng, TENG Li, et al. Mechanics characteristics study of segment in Double-O-Tube tunnel under in-situ test method during its construction process[J]. Chinese Quarterly of Mechanics, 2005, 23(6): 59-463. (in Chinese)

      [11] 郭璇, 朱坤, 张晓新, 等. 双圆盾构隧道-软土层相互作用规律的模型试验及响应分析[J]. 铁道学报, 2016, 38(9): 101-108.

      GUO Xuan, ZHU Kun, ZHANG Xiaoxin, et al. DOT model test and interactive response analysis of soft soil layer to double circular shield tunnel[J]. Journal of the China Railway Society, 2016, 38(9): 101-108. (in Chinese)

      [12]

      SHEN S L, HORPIBULSUK S, LIAO S M, et al. Analysis of the behavior of DOT tunnel lining caused by rolling correction operation[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 84-90. doi: 10.1016/j.tust.2008.05.003

      [13]

      LIU Y B, LIAO S M, CHEN L S, et al. Structural responses of DOT tunnel induced by shield under-crossing in close proximity in soft ground: part Ⅰ field measurement[J]. Tunnelling and Underground Space Technology, 2022, 128: 104623. doi: 10.1016/j.tust.2022.104623

      [14] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043. doi: 10.11779/CJGE201606009

      SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese) doi: 10.11779/CJGE201606009

      [15]

      LIU X, BAI Y, YUAN Y, et al. Experimental investigation of the ultimate bearing capacity of continuously jointed segmental tunnel linings[J]. Structure and Infrastructure Engineering, 2016, 12(10): 1364-1379. doi: 10.1080/15732479.2015.1117115

      [16] 柳献, 刘震, 叶宇航, 等. 复杂受荷下盾构隧道原型结构试验平台的研发与实证[J]. 岩土工程学报, 2024, 46(5): 927-937. doi: 10.11779/CJGE20230155

      LIU Xian, LIU Zhen, YE Yuhang, et al. Development and demonstration of prototype test platform for shield tunnel linings under complex loading scenarios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 927-937. (in Chinese) doi: 10.11779/CJGE20230155

      [17]

      LIU X, YE Y H, LIU Z, et al. Mechanical behavior of quasi-rectangular segmental tunnel linings: first results from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2018, 71: 440-453. doi: 10.1016/j.tust.2017.09.019

      [18]

      ZHANG Y M, KARLOVŠEK J, LIU X. Identification method for internal forces of segmental tunnel linings via the combination of laser scanning and hybrid structural analysis[J]. Sensors, 2022, 22(6): 2421.

      [19]

      LIU X, LIU Z, YE Y H, et al. Mechanical behavior of quasi-rectangular segmental tunnel linings: further insights from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2018, 79: 304-318.

      [20]

      LAQUE F L. The corrosion resistance of ductile iron[J]. Corrosion, 1958, 14(10): 55-62.

      [21] 郑光辉, 庞小朝, 王康任. 基于整环足尺试验的盾构隧道破坏机制及纵缝外弧面变形分析[J]. 隧道建设(中英文), 2021, 41(增刊2): 165-171.

      ZHENG Guanghui, PANG Xiaochao, WANG Kangren. Failure mechanism of shield tunnel based on full-scale experiment and analysis of longitudinal joint's outboard deformation[J]. Tunnel Construction, 2021, 41(S2): 165-171. (in Chinese)

    图(11)  /  表(2)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-28
    • 网络出版日期:  2024-10-14
    • 刊出日期:  2025-02-28

    目录

      /

      返回文章
      返回