Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于随机介质理论的偏压隧道地表沉降预测方法

周鹏远, 宋战平, 王军保, 张玉伟, 田小旭

周鹏远, 宋战平, 王军保, 张玉伟, 田小旭. 基于随机介质理论的偏压隧道地表沉降预测方法[J]. 岩土工程学报, 2025, 47(3): 589-598. DOI: 10.11779/CJGE20231121
引用本文: 周鹏远, 宋战平, 王军保, 张玉伟, 田小旭. 基于随机介质理论的偏压隧道地表沉降预测方法[J]. 岩土工程学报, 2025, 47(3): 589-598. DOI: 10.11779/CJGE20231121
ZHOU Pengyuan, SONG Zhanping, WANG Junbao, ZHANG Yuwei, TIAN Xiaoxu. Prediction method for ground surface settlement induced by bias tunnel based on stochastic medium theory[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 589-598. DOI: 10.11779/CJGE20231121
Citation: ZHOU Pengyuan, SONG Zhanping, WANG Junbao, ZHANG Yuwei, TIAN Xiaoxu. Prediction method for ground surface settlement induced by bias tunnel based on stochastic medium theory[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 589-598. DOI: 10.11779/CJGE20231121

基于随机介质理论的偏压隧道地表沉降预测方法  English Version

基金项目: 

国家自然科学基金项目 52178393

陕西省科技创新团队项目 2020TD-005

详细信息
    作者简介:

    周鹏远(1993—),男,博士研究生,主要从事城市地下空间及岩土工程方面的研究工作。E-mail: zhoupengyuan@xauat.edu.cn

    通讯作者:

    宋战平, E-mail: songzhpyt@xauat.edu.cn

  • 中图分类号: TU91

Prediction method for ground surface settlement induced by bias tunnel based on stochastic medium theory

  • 摘要: 隧道开挖引起地表沉降的各种预测方法均假定隧道收敛模式为对称形式,忽略了隧道非对称收敛的影响。为对偏压隧道引起地表沉降进行预测,提出了一种新的隧道偏压收敛模式,定义了相应的偏压参数θγ1γ3,基于随机介质理论,利用坐标变换和二重积分的数值化处理,得到了偏压隧道引起地表沉降的预测模型;通过实际工程案例,验证了该方法的适用性,并分析了相关参数对地表沉降的影响规律。提出的预测模型将传统对称收敛模式拓展至非对称情况,能很好预测地表沉降的非对称趋势,且更接近实际案例的监测数值。
    Abstract: The disturbance of the surrounding soil by tunnel excavation will inevitably lead to surface settlement. When calculating the surface settlement caused by tunnel excavation, various prediction methods have assumed that the tunnel convergence mode is bilaterally symmetrical. This assumption ignores the influences of asymmetric convergence of the tunnel, and the resulting surface settlement is also symmetrically distributed. In order to predict the surface settlement caused by a bias tunnel, a new tunnel bias convergence mode is proposed, and the corresponding bias parameters θ, γ1 and γ3 are defined. Based on the stochastic medium theory, a prediction model for the surface settlement caused by the bias tunnel is obtained using the coordinate transformation and double-integral numerical processing. Through actual engineering cases, the applicability of this method is verified, and the influences of the relevant parameters on the surface settlement are analyzed. The proposed model extends the traditional symmetric convergence mode to asymmetric situations, can well predict the asymmetric trend of surface settlement, and it is closer to the monitoring values of actual cases.
  • 图  1   二维断面开挖收敛示意图

    Figure  1.   Schematic diagram of 2D section convergence

    图  2   圆形隧道经典不均匀收敛模式

    Figure  2.   Classical convergence mode for circular tunnel

    图  3   圆形隧道偏压收敛模式

    Figure  3.   Convergence mode for bias tunnel

    图  4   偏压隧道积分坐标变换示意图

    Figure  4.   Schematic diagram of coordinate transformation

    图  5   福宁路—五块石区间工程平面图

    Figure  5.   Layout plan of Funinglu Station-Wukuaishi Station project

    图  6   工程区间地质剖面图

    Figure  6.   Geological profile map of project

    图  7   各断面偏压隧道地表沉降预测

    Figure  7.   Prediction of surface settlement of bias tunnel at each section

    图  8   本文方法与传统对称收敛模型的比较

    Figure  8.   Comparison between proposed method and traditional symmetric convergence model

    图  9   不同θ下地表沉降曲线

    Figure  9.   Curves of surface settlement under different values of θ

    图  10   ΔXSmaxθ变化规律

    Figure  10.   Variation trends in ΔX and Smax with θ

    图  11   不同γ1下地表沉降曲线

    Figure  11.   Curves of surface settlement under different values of γ1

    图  12   ΔXSmaxγ1变化规律

    Figure  12.   Variation trends in ΔX and Smax with γ1

    图  13   不同γ3下地表沉降曲线

    Figure  13.   Curves of surface settlement under different values of γ3

    图  14   ΔXSmaxγ3变化规律

    Figure  14.   Variation trends in ΔX and Smax with γ3

    图  15   不同H/R下地表沉降曲线

    Figure  15.   Curves of surface settlement under different values of H/R

    图  16   ΔXSmaxH/R变化规律

    Figure  16.   Variation trends in ΔX and Smax with H/R

    表  1   偏压隧道收敛模式积分界限表

    Table  1   Integral limits of convergence mode of bias tunnel

    Ω-整体坐标系 ω-局部坐标系
    a HR e (Ru0u1)
    b H+R f Ru0u1
    c R2(ηH)2 g (Ru0+u2)1[η/(Ru0u1)]2
    d R2(ηH)2 h (Ru0+u2)1[η/(Ru0u1)]2
    下载: 导出CSV

    表  2   土体物理力学参数表

    Table  2   Physical and mechanical parameters of soils

    土层名称 重度γ/(kN·m-3) 弹性模量E/MPa 泊松比ν 黏聚力c/kPa 内摩擦角φ/(°)
    人工填土 18 7 0.3 8 10
    粉质黏土 19.5 15 0.3 20 16.5
    细砂 18.5 4 0.27 0 20
    松散卵石 20 20 0.26 0 30
    稍密卵石 21 23 0.28 0 35
    中密卵石 22 32 0.25 0 40
    密实卵石 23 43 0.22 0 45
    中砂 19 5.5 0.26 0 22
    下载: 导出CSV

    表  3   成都地铁五号线典型偏压断面计算参数表

    Table  3   Parameters of typical section of Chengdu Metro Line 5

    断面 里程 H/m R/m β/( ) Vl/% θ/( ) γ1/% γ3/%
    DK1 DK15+620 19.5 3 34.5 2 43 0.97 0.33
    DK2 DK15+770 26.5 3 34.7 2 45 0.73 0.29
    DK3 DK15+830 21.4 3 35.0 2 12 0.76 0.21
    下载: 导出CSV

    表  4   研究隧道计算参数表

    Table  4   Parameters of tunnels

    隧道 H/m R/m β/( ) Vl/% θ/( ) γ1/% γ3/%
    巴西快速交通隧道 14.0 4.8 37.60 8.52 38 0.36 0.17
    台湾三义一号隧道 23.5 5.5 41.67 1.77 -29 0.56 0.14
    某215工程隧道 19.5 3.0 51.11 0.28 23 0.33 0.09
    下载: 导出CSV
  • [1] 张治国, 黄茂松, 杨轩. 基于衬砌长期渗漏水影响的隧道施工扰动诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.

    ZHANG Zhiguo, HUANG Maosong, YANG Xuan. Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage[J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144. (in Chinese)

    [2] 李辉, 杨贵阳, 宋战平, 等. 矩形顶管施工引起土体分层变形计算方法研究[J]. 地下空间与工程学报, 2019, 15(5): 1482-1489.

    LI Hui, YANG Guiyang, SONG Zhanping, et al. Study on calculation method of soil delamination deformation caused by rectangular pipe jacking construction[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1482-1489. (in Chinese)

    [3] 张治国, 毛敏东, PANY T, 等. 隧道-滑坡相互作用影响及控制防护技术研究现状与展望[J]. 岩土力学, 2021, 42(11): 3101-3125.

    ZHANG Zhiguo, MAO Mindong, PANY T, et al. Research status and prospect of tunnel-landslide interaction and control protection technology[J]. Rock and Soil Mechanics, 2021, 42(11): 3101-3125. (in Chinese)

    [4] 李世豪, 宋战平. 地铁隧道施工地表沉降槽宽度系数取值研究[J]. 公路, 2018, 63(5): 302-308.

    LI Shihao, SONG Zhanping. Research on the calculation of the settlement width through influenced by shield tunneling[J]. Highway, 2018, 63(5): 302-308. (in Chinese)

    [5]

    WANG J B, ZHOU P Y, SONG Z P, et al. A new calculation method for tunneling-caused stratum settlement[J]. KSCE Journal of Civil Engineering, 2022, 26(6): 2624-2640. doi: 10.1007/s12205-022-1258-z

    [6] 宋战平, 李世豪, 张学钢, 等. 基于修正Peck法的隧道施工全地层变形规律研究[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(2): 190-195.

    SONG Zhanping, LI Shihao, ZHANG Xuegang, et al. Study on strata settlement regular pattern induced by tunnel construction based on Peck formula[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2018, 50(2): 190-195. (in Chinese)

    [7] 魏纲, 杨波, 吴华君, 等. 盾构穿越引起的既有盾构隧道纵向变形研究[J]. 地下空间与工程学报, 2020, 16(6): 1754-1762, 1808.

    WEI Gang, YANG Bo, WU Huajun, et al. Research on longitudinal deformation of existing shield tunnel caused by shield tunneling[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1754-1762, 1808. (in Chinese)

    [8]

    LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856. doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)

    [9] 邓婷, 黄茂松, 时振昊, 等. 软黏土深埋矩形顶管施工地层变形分析[J]. 土木工程学报, 2023, 56(增刊2): 157-162.

    DENG Ting, HUANG Maosong, SHI Zhenhao, et al. Ground deformation response induced by jacking process of deep rectangular tunnel in soft clay[J]. China Civil Engineering Journal, 2023, 56(S2): 157-162. (in Chinese)

    [10] 袁冉, 熊维林, 何毅, 等. 复合成层地层浅埋隧道开挖地表沉降规律分析[J]. 西南交通大学学报, 2022, 57(5): 1063-1069.

    YUAN Ran, XIONG Weilin, HE Yi, et al. Analysis of ground settlement induced by shallow tunnel excavation in composite layered strata[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1063-1069. (in Chinese)

    [11] 王明年, 李志业, 关宝树. 3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J]. 岩土力学, 2002, 23(6): 821-824.

    WANG Mingnian, LI Zhiye, GUAN Baoshu. Research on controlling measures for ground surface settlement of three little distance parallel shallow embedded tunnels[J]. Rock and Soil Mechanics, 2002, 23(6): 821-824. (in Chinese)

    [12] 张宇亭, 安晓宇, 晋亚斐. 隧道开挖引起上部建筑物沉降的离心模型试验研究[J]. 岩土工程学报, 2022, 44(增刊2): 54-57. doi: 10.11779/CJGE2022S2012

    ZHANG Yuting, AN Xiaoyu, JIN Yafei. Centrifugal model tests on settlement of structures caused by tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 54-57. (in Chinese) doi: 10.11779/CJGE2022S2012

    [13] 李洛宾, 龚晓南, 甘晓露, 等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报, 2020, 53(增刊1): 13-19.

    LI Luobin, GONG Xiaonan, GAN Xiaolu, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(S1): 13-19. (in Chinese)

    [14] 潘秋景, 吴洪涛, 张子龙, 等. 基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测[J]. 岩土力学, 2024, 45(2): 539-551.

    PAN Qiujing, WU Hongtao, ZHANG Zilong, et al. Prediction of tunneling-induced ground surface settlement within composite strata using multi-physics-informed neural network[J]. Rock and Soil Mechanics, 2024, 45(2): 539-551. (in Chinese)

    [15] 阳军生, 刘宝琛. 挤压式盾构隧道施工引起的地表移动及变形[J]. 岩土力学, 1998, 19(3): 10-13.

    YANG Junsheng, LIU Baochen. Ground surface movement and deformation due to tunnel construction by squeezing shield[J]. Rock and Soil Mechanics, 1998, 19(3): 10-13. (in Chinese)

    [16] 刘波, 杨伟红, 张功, 等. 基于隧道不均匀变形的地表沉降随机介质理论预测模型[J]. 岩石力学与工程学报, 2018, 37(8): 1943-1952.

    LIU Bo, YANG Weihong, ZHANG Gong, et al. A prediction model based on stochastic medium theory for ground surface settlement induced by non-uniform tunnel deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1943-1952. (in Chinese)

    [17] 魏纲, 朱奎, 陈伟军. 不同施工工况下双圆盾构引起的土体沉降研究[J]. 岩土工程学报, 2011, 33(3): 477-482. http://cge.nhri.cn/article/id/13965

    WEI Gang, ZHU Kui, CHEN Weijun. Ground settlement induced by double-O-tube shield tunneling under different construction conditions[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 477-482. (in Chinese) http://cge.nhri.cn/article/id/13965

    [18]

    LITWINISZYN J. Fundamental principles of the mechanics of stochastic medium[C]//Proceedings of the 3rd Conference on Theoretical Applied Mechanics, Bangalore, 1957.

    [19] 刘宝琛, 廖国华. 煤矿地表移动的基本规律[M]. 北京: 中国工业出版社, 1965.

    LIU Baochen, LIAO Guohua. Basic Law of Coal Mine Surface Movement[M]. Beijing: China Architecture and Building Press, 1965. (in Chinese)

    [20] 施成华, 彭立敏, 刘宝琛. 盾构法施工隧道纵向地层移动与变形预计[J]. 岩土工程学报, 2003, 25(5): 585-589. http://cge.nhri.cn/article/id/11275

    SHI Chenghua, PENG Limin, LIU Baochen. Prediction of longitudinal movement and deformation of stratum in longitudinal section due to tunnel construction by shield[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 585-589. (in Chinese) http://cge.nhri.cn/article/id/11275

    [21] 姬永红. 隧道施工引起横向地层沉降的随机预测[J]. 岩土工程技术, 2004, 18(1): 16-18, 34.

    JI Yonghong. Stochastic theory for predicting latitudinal stratum settlement due to the tunnel construction[J]. Geotechnical Engineering Technique, 2004, 18(1): 16-18, 34. (in Chinese)

    [22]

    SONG Z P, TIAN X X, ZHANG Y W. A new modified Peck formula for predicting the surface settlement based on stochastic medium theory[J]. Advances in Civil Engineering, 2019(2): 1-14.

    [23] 江帅, 朱勇, 栗青, 等. 隧道开挖地表沉降动态预测及影响因素分析[J]. 岩土力学, 2022, 43(1): 195-204.

    JIANG Shuai, ZHU Yong, LI Qing, et al. Dynamic prediction and influence factors analysis of ground surface settlement during tunnel excavation[J]. Rock and Soil Mechanics, 2022, 43(1): 195-204. (in Chinese)

    [24] 徐强, 朱永全, 雷升祥, 等. 隧道下穿施工引起既有隧道及地层变形预测的改进随机介质理论模型[J]. 岩土工程学报, 2023, 45(2): 301-309. doi: 10.11779/CJGE20211447

    XU Qiang, ZHU Yongquan, LEI Shengxiang, et al. Improved stochastic medium theoretical model for predicting deformation of existing tunnels and strata caused by excavation of new undercrossing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 301-309. (in Chinese) doi: 10.11779/CJGE20211447

    [25] 韩煊, 李宁. 隧道开挖不均匀收敛引起地层位移的预测模型[J]. 岩土工程学报, 2007, 29(3): 347-352. http://cge.nhri.cn/article/id/12332

    HAN Xuan, LI Ning. A predicting model for ground movement induced by non-uniform convergence of tunnel[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 347-352. (in Chinese) http://cge.nhri.cn/article/id/12332

    [26] 朱洪高, 郑宜枫, 杨滨. 双圆盾构(DOT)隧道的地表沉降分析[J]. 河海大学学报(自然科学版), 2007, 35(2): 191-196.

    ZHU Honggao, ZHENG Yifeng, YANG Bin. Analysis of surface settlement induced by DOT shield tunnel[J]. Journal of Hohai University (Natural Sciences), 2007, 35(2): 191-196. (in Chinese)

    [27] 魏纲, 周杨侃. 随机介质理论预测近距离平行盾构引起的地表沉降[J]. 岩土力学, 2016, 37(增刊2): 113-119.

    WEI Gang, ZHOU Yangkan. A simplified method for predicting ground settlement caused by adjacent parallel twin shield tunnel construction based on stochastic medium theory[J]. Rock and Soil Mechanics, 2016, 37(S2): 113-119. (in Chinese)

    [28] 孟丹, 臧晓光, 于广明, 等. 地铁车站开挖引起地表沉降分析方法的对比研究[J]. 岩石力学与工程学报, 2012, 31(6): 1169-1177.

    MENG Dan, ZANG Xiaoguang, YU Guangming, et al. Comparative study of analytical methods for ground surface settelment induced by subway station construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1169-1177. (in Chinese)

    [29] 阳军生, 刘宝琛. 城市隧道施工引起的地表移动及变形[M]. 北京: 中国铁道出版社, 2002.

    YANG Junsheng, LIU Baochen. Ground Movement and Deformation Caused by Urban Tunnel Construction[M]. Beijing: China Railway Publishing House, 2002. (in Chinese)

图(16)  /  表(4)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  24
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 网络出版日期:  2024-08-20
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回