• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑埋深的黏性回填挡墙抗震转动稳定性上限分析

李东阳, 马志宏, 刘杰, 尹吉丽, 孙勃岩

李东阳, 马志宏, 刘杰, 尹吉丽, 孙勃岩. 考虑埋深的黏性回填挡墙抗震转动稳定性上限分析[J]. 岩土工程学报, 2025, 47(6): 1181-1189. DOI: 10.11779/CJGE20230990
引用本文: 李东阳, 马志宏, 刘杰, 尹吉丽, 孙勃岩. 考虑埋深的黏性回填挡墙抗震转动稳定性上限分析[J]. 岩土工程学报, 2025, 47(6): 1181-1189. DOI: 10.11779/CJGE20230990
LI Dongyang, MA Zhihong, LIU Jie, YIN Jili, SUN Boyan. Upper-bound limit analysis of seismic rotational stability of retaining walls with cohesive backfill considering embedment depth[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1181-1189. DOI: 10.11779/CJGE20230990
Citation: LI Dongyang, MA Zhihong, LIU Jie, YIN Jili, SUN Boyan. Upper-bound limit analysis of seismic rotational stability of retaining walls with cohesive backfill considering embedment depth[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1181-1189. DOI: 10.11779/CJGE20230990

考虑埋深的黏性回填挡墙抗震转动稳定性上限分析  English Version

基金项目: 

国家自然科学基金项目 41771083

详细信息
    作者简介:

    李东阳(1980—),男,博士,副教授,主要从事城市地下空间和岩土工程方面的研究工作。E-mail: 201113@cumtb.edu.cn

    通讯作者:

    刘杰, E-mail: jieliucqu@cqu.edu.cn

  • 中图分类号: TU432

Upper-bound limit analysis of seismic rotational stability of retaining walls with cohesive backfill considering embedment depth

  • 摘要: 在挡土墙抗震稳定性的研究中,往往假定墙体的埋深为零,导致墙前回填土的作用被忽略。基于极限上限分析理论,考虑了埋深因素对黏性回填挡土墙抗震稳定性的影响。采用斜条分法,将墙前与墙后的回填土微分成平行于破裂面的刚性土条。建立了挡土墙绕墙趾转动,墙前与墙后填土分块滑动的墙-土系统。根据功-能平衡方程,推导了挡墙抗震加速度系数的表达式,讨论了地震作用下的填土高度、内摩擦角、填土黏聚力、墙-土摩擦角对挡土墙抗震转动稳定性的影响。结果表明:当墙前回填土高度与墙后回填土高度比值(H2/H1)大于0.15时,地震屈服加速度系数将急剧增大,此时若忽略墙前回填土的作用则会低估挡土墙的抗震稳定性。最后,通过与极限平衡理论的方法进行对比,证实了该方法计算的准确性。
    Abstract: For most researches on the seismic stability of retaining walls, the embedment depth of the wall is often assumed to be zero, resulting in the role of backfill in front of the wall being neglected. Based on the theory of the upper bound limit analysis, the impact of embedment depth on the seismic stability of retaining walls with cohesive backfill is investigated. The diagonal slice method is employed to differentiate the backfill in front of and behind the wall into rigid soil slices parallel to the rupture surface. A wall-soil system in which the retaining wall rotates around the toe of the wall and the fill in front of and behind the wall slides in pieces is established. According to the work-energy balance equation, the expression for the seismic acceleration coefficient of the retaining wall is derived, and the effects of filling height, internal friction angle, filling cohesion and wall-soil friction angle on the seismic rotational stability of the retaining wall under seismic action are discussed. The results show that when the ratio of the height of backfill in front of the wall to the height of backfill behind the wall (H2/H1) is greater than 0.15, the coefficient of seismic yield acceleration will increase dramatically, and the seismic stability of the retaining wall will be underestimated if the effects of backfill in front of the wall are neglected at this time. Finally, the accuracy of the proposed method is confirmed by comparing with the method of the limit equilibrium theory.
  • 图  1   考虑埋深的黏性回填挡土墙纯转动破坏模型

    Figure  1.   Pure rotation failure model for retaining wall with cohesive backfill considering embedment depth

    图  2   挡土墙前后刚性土条的划分

    Figure  2.   Division of rigid soil slices before and behind retaining wall

    图  3   墙后的不同运动区域

    Figure  3.   Division of different motion areas behind wall

    图  4   墙后破坏区土楔体中任一刚性土条

    Figure  4.   Any rigid soil slice in soil wedge of failure zone behind wall

    图  5   θ > δ时速度矢量关系

    Figure  5.   Relation of velocity vectors for case θ > δ

    图  6   θ < δ时速度矢量关系

    Figure  6.   Relation of velocity vectors for case θ < δ

    图  7   墙前破坏区土楔体中任一刚性土条

    Figure  7.   Any rigid soil slice in soil wedge of failure zone in front of wall

    图  8   墙前破坏区土楔体速度矢量关系

    Figure  8.   Relation of velocity vectors of wedge in failure zone in front of wall

    图  9   kcrH2/H1的变化

    Figure  9.   Variation of kcr with H2/H1

    图  10   kcrc2的变化

    Figure  10.   Variation of kcr with cohesive force c2

    图  11   kcr随内摩擦角φ2的变化

    Figure  11.   Variation of kcr with friction angle φ2

    图  12   kcr随墙-土摩擦角δ的变化

    Figure  12.   Variation of kcr with wall-soil friction angle δ

    图  13   极限平衡理论下挡墙破坏模型

    Figure  13.   Model for rotational failure of retaining wall in limit equilibrium method

    图  14   与极限平衡理论所得结果的对比

    Figure  14.   Comparison of results by proposed method and limit equilibrium method

  • [1]

    SARAN S, PRAKASH S. Dimensionless parameters for static and dynamic earth pressures behind retaining walls[J]. Indian Geotechnical J, 1968, 7(3): 295-310.

    [2]

    SHUKLA S K, GUPTA S K, SIVAKUGAN N. Active earth pressure on retaining wall for c-ϕ soil backfill under seismic loading condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 690-696. doi: 10.1061/(ASCE)GT.1943-5606.0000003

    [3]

    SHUKLA S K. Dynamic active thrust from c-ϕ soil backfills[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3): 526-529. doi: 10.1016/j.soildyn.2010.10.001

    [4]

    SHUKLA S K, HABIBI D. Dynamic passive pressure from c-ϕ soil backfills[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 845-848.

    [5] 张瀚文, 蒋良潍, 杜美玲, 等. 重力式挡土墙抗震稳定性检算最不利状态选取探讨[J]. 防灾减灾工程学报, 2024, 44(2): 372-380.

    ZHANG Hanwen, JIANG Liangwei, DU Meiling, et al. Exploration on selection of the most unfavorable state for seismic stability calculation of gravity retaining walls[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(2): 372-380. (in Chinese)

    [6] 于昕左, 肖世国. 水平柔性拉筋式重力墙地震土压力拟静力分析方法[J]. 土木工程学报, 2019, 52(增刊2): 180-185.

    YU Xinzuo, XIAO Shiguo. Quasi-static analysis method of seismic earth pressure of horizontal flexible tension bar gravity wall[J]. China Civil Engineering Journal, 2019, 52(S2): 180-185. (in Chinese)

    [7] 贾亮, 贺世开, 李刚, 等. 地震作用下加筋挡土墙内部稳定性分析[J]. 岩土工程学报, 2018, 40(增刊1): 107-111.

    JIA Liang, HE Shikai, LI Gang, et al. Internal stability of reinforced retaining wall under earthquake loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 107-111. (in Chinese)

    [8] 王桂林, 赵飞, 张永兴. 重力式挡土墙地震旋转位移下的屈服加速度[J]. 岩土力学, 2013, 34(6): 1579-1585.

    WANG Guilin, ZHAO Fei, ZHANG Yongxing. Earthquake yield acceleration of seismic rotational displacement of gravity retaining wall[J]. Rock and Soil Mechanics, 2013, 34(6): 1579-1585. (in Chinese)

    [9]

    TEODORU I B. Design charts for embedded earth retaining walls according to eurocode 7[C]// SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings, 15th International Multidisciplinary Scientific GeoConference SGEM2015, Science and Technologies in Geology, Exploration and Mining. Stef92 Technology, 2011.

    [10]

    KRABBENHOFT K. Plastic design of embedded retaining walls[J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2019, 172(2): 131-144. doi: 10.1680/jgeen.17.00151

    [11]

    CHOWDHURY S S. A study on lateral earth pressure against strutted retaining wall in cohesionless soil deposit[J]. International Journal of Geotechnical Engineering, 2019, 13(2): 122-138. doi: 10.1080/19386362.2017.1326683

    [12] 杨剑. 挡土墙地震被动土压力的拟动力分析[J]. 防灾减灾工程学报, 2012, 32(3): 365-371.

    YANG Jian. Study on passive earth pressure of vertical retaining walls by pseudo-dynamic analysis[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(3): 365-371. (in Chinese)

    [13]

    RAJESH B G, CHOUDHURY D. Stability of seawalls using modified pseudo-dynamic method under earthquake conditions[J]. Applied Ocean Research, 2017, 65: 154-165. doi: 10.1016/j.apor.2017.04.004

    [14]

    RAJESH B G, CHOUDHURY D. Computation of sliding displacements of seawalls under earthquake conditions[J]. Natural Hazards, 2019, 96(1): 97-119. doi: 10.1007/s11069-018-3531-5

    [15]

    LI X G, LIU J. Seismic rotational stability analysis of gravity retaining wall under heavy rainfall[J]. KSCE Journal of Civil Engineering, 2021, 25(12): 4575-4584. doi: 10.1007/s12205-021-1623-3

    [16]

    LIU J, LI X G. Upper-bound limit analysis on seismic rotational stability of waterfront retaining walls[J]. Marine Georesources & Geotechnology, 2022, 40(5): 554-562.

    [17] 马志宏, 郭督, 杨轶博, 等. 海啸作用下滨水挡土墙抗震转动稳定性上限分析[J]. 世界地震工程, 2023, 39(2): 230-238.

    MA Zhihong, GUO Du, YANG Yibo, et al. Upper-bound limit analysis on rotational stability of waterfront retaining walls under earthquake and tsunami[J]. World Earthquake Engineering, 2023, 39(2): 230-238. (in Chinese)

    [18]

    LI X P, WU Y, HE S M. Seismic stability analysis of gravity retaining walls[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 875-878. doi: 10.1016/j.soildyn.2010.04.005

    [19]

    ZHANG X X, HE S M, SU Q, et al. Seismic stability analysis of pre-stressed rope of anti-slide retaining wall[J]. Geotechnical and Geological Engineering, 2013, 31(4): 1393-1398. doi: 10.1007/s10706-013-9627-5

    [20] 刘杰, 黄达, 顾东明, 等. 考虑墙前填土作用下无黏性填土挡墙地震转动稳定性分析[J]. 岩土工程学报, 2014, 36(11): 2144-2148.

    LIU Jie, HUANG Da, GU Dongming, et al. Seismic rotating stability analysis of retaining wall backfilled by cohesiveless soils considering influence of front cover soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2144-2148. (in Chinese)

    [21]

    ZENG X, STEEDMAN R S. Rotating block method for seismic displacement of gravity walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 709-717. doi: 10.1061/(ASCE)1090-0241(2000)126:8(709)

    [22]

    HUANG D, LIU J. Upper-bound limit analysis on seismic rotational stability of retaining wall[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2664-2669. doi: 10.1007/s12205-016-0471-z

    [23] 陈惠发, 詹世斌. 极限分析与土体塑性[M]. 北京: 人民交通出版社, 1995.

    CHEN Huifa, ZHAN Shibin. Limit Analysis and Soil Plasticity[M]. Beijing: China Communications Press, 1995. (in Chinese)

图(14)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 网络出版日期:  2024-09-28
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回