Time-varying reliability analysis of unsaturated reservoir bank slopes under water level drop considering multi-parameter spatial variability
-
摘要: 库水降落及土体参数空间变异性是影响边坡稳定性的重要因素,对这两种因素作用下库岸边坡进行可靠度评价具有重要意义。但现有可靠度分析大多仅考虑单一抗剪强度参数或水力参数的空间变异性,且仅分析某一时刻的静态可靠度,忽略了多参数空间变异性及时变因素的影响。为此,提出了同时考虑这两种因素的库岸边坡时变可靠度分析方法。采用Karhunen-Loève展开方法对土体参数随机场进行离散,利用分片逆回归(SIR)方法对随机变量进行降维预处理,基于降维后的变量构建高斯过程回归(GPR)代理模型,进而采用蒙特卡洛模拟(MCS)方法评估边坡失效概率。最后,以某一非饱和库岸边坡为例验证了所提方法的有效性,探讨了边坡在不同水位降落工况下的可靠度变化规律,并对关键土体参数进行了敏感性分析。结果表明:所提方法能准确、高效地描绘边坡失效概率(Pf)的时变规律,为考虑多参数空间变异性的非饱和边坡时变可靠度问题提供了一条有效的途径;库水降落越快时边坡安全系数(FS)下降和失效概率上升的速率越快;多个土体参数的空间变异性和相关性均对边坡可靠度计算结果有影响。Abstract: The reservoir water level drop and the spatial variability of soil parameters are the important factors affecting slope stability, and it is important to evaluate the reliability of reservoir slopes under the action of these two factors. However, most of the existing reliability analyses only consider the spatial variability of a single shear strength parameter or hydraulic parameter, and only the static reliability at a certain moment is analyzed, ignoring the influences of multi-parameter spatial variability and time-varying factors. For this reason, a time-varying reliability analysis method for reservoir slopes that considers both factors is proposed. The Karhunen-Loève expansion method is used to discretize the random field of soil parameters, and the slice inverse regression (SIR) method is used to reduce the dimension of random variables. Based on the reduced variables, the Gaussian process regression (GPR) surrogate model is constructed, and then the Monte Carlo simulation (MCS) method is used to evaluate the slope failure probability. Finally, the effectiveness of the proposed method is verified by taking an unsaturated reservoir bank slope as an example, and the reliability variation law of the slope under different water level plunge conditions is explored, and the sensitivity analysis of key soil parameters is conducted. The proposed method can accurately and efficiently describe the time-varying law of slope failure probability (Pf), which provides an effective way for the time-varying reliability problem of unsaturated slopes considering multi-parameter spatial variability. The faster the reservoir water plummets, the faster the slope safety factor (FS) decreases and the failure probability increases. The spatial variability and correlation of multiple soil parameters have an impact on the calculated results of slope reliability.
-
Keywords:
- slope /
- reliability /
- spatial variability /
- surrogate model /
- time-varying water level /
- parameter sensitivity
-
利益冲突声明/Conflict of Interests:所有作者声明不存在利益冲突。All authors disclose no relevant conflict of interest.作者贡献/Authors' Contributions:邓志平完成方法的提出和论文的写作与修改;邹艺完成程序的编写和论文的写作与修改;潘敏完成指导和论文的修改;蒋水华参与指导和论文的修改;郑克红参与论文的修改和数据分析。所有作者均阅读并同意最终稿件的提交。DENG Zhiping: Conceptualization, Methodology, Writing – Original Draft, Writing – Review & Editing. ZOU Yi: Software (Code Implementation), Writing – Original Draft, Writing – Review & Editing. PAN Min: Supervision, Writing – Review & Editing. JIANG Shuihua: Supervision, Writing – Review & Editing. ZHENG Kehong: Writing – Review & Editing, Data Analysis. All authors have read and approved the final manuscript for submission.
-
表 1 土体物理力学参数
Table 1 Physical and mechanical parameters of soil
确定性分析 渗流 稳定 参数 ks/(10-6 m·s-1) a/kPa n c'/kPa φ'/(°) 均值 1.160 28.44 1.720 5 30 标准差 0.696 11.376 0.344 1.5 6 变异系数 0.6 0.4 0.2 0.3 0.2 互相关系数 -0.25 -0.5 表 2 不同时刻库岸边坡安全系数
Table 2 Safety factor of reservoir bank slope at different moments
时间步序号 时间/d FS 1 0 1.846 2 1 1.544 3 2 1.358 4 3 1.258 5 5 1.256 6 8 1.316 7 11 1.355 8 15 1.393 9 22 1.441 10 30 1.479 -
[1] 周家文, 陈明亮, 瞿靖昆, 等. 水库滑坡灾害致灾机理及防控技术研究与展望[J]. 工程科学与技术, 2023, 55(1): 110-128. ZHOU Jiawen, CHEN Mingliang, QU Jingkun, et al. Research and prospect on disaster-causing mechanism and prevention-control technology of reservoir landslides[J]. Advanced Engineering Sciences, 2023, 55(1): 110-128. (in Chinese)
[2] GUARDIANI C, SORANZO E, WU W. Time-dependent reliability analysis of unsaturated slopes under rapid drawdown with intelligent surrogate models[J]. Acta Geotechnica, 2022, 17(4): 1071-1096. doi: 10.1007/s11440-021-01364-w
[3] 潘敏, 邓志平, 蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法[J]. 地质科技通报, 2022, 41(2): 176-186. PAN Min, DENG Zhiping, JIANG Shuihua. Simulation method of stratigraphic uncertainty using a boundary model and generalized coupled Markov chain model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 176-186. (in Chinese)
[4] 蒋水华, 李典庆, 周创兵, 等. 考虑参数空间变异性的非饱和土坡可靠度分析[J]. 岩土力学, 2014, 35(9): 2569-2578. JIANG Shuihua, LI Dianqing, ZHOU Chuangbing, et al. Reliability analysis of unsaturated slope considering spatial variability[J]. Rock and Soil Mechanics, 2014, 35(9): 2569-2578. (in Chinese)
[5] CHO S E. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation[J]. Engineering Geology, 2012, 133: 30-39.
[6] TAN X H, WANG X, KHOSHNEVISAN S, et al. Seepage analysis of earth dams considering spatial variability of hydraulic parameters[J]. Engineering Geology, 2017, 228: 260-269. doi: 10.1016/j.enggeo.2017.08.018
[7] ZHANG W G, WU J H, GU X, et al. Probabilistic stability analysis of embankment slopes considering the spatial variability of soil properties and seismic randomness[J]. Journal of Mountain Science, 2022, 19(5): 1464-1474. doi: 10.1007/s11629-021-6981-2
[8] 廖文旺, 姬建, 张童, 等. 考虑降雨入渗参数空间变异性的浅层滑坡时效风险分析[J]. 岩土力学, 2022, 43(S1): 623-632. LIAO Wenwang, JI Jian, ZHANG Tong, et al. Time-effect risk analysis of shallow landslide considering spatial variability of rainfall infiltration parameters[J]. Rock and Soil Mechanics, 2022, 43(S1): 623-632. (in Chinese)
[9] 王长虹, 杜昊东, 柳伟, 等. 考虑非饱和渗透系数随机场统计特征的库岸老滑坡稳定性分析[J]. 岩土工程学报, 2023, 45(2): 327-335. doi: 10.11779/CJGE20211273 WANG Changhong, DU Haodong, LIU Wei, et al. Stability analysis of old reservoir bank landslide by considering spatial random field characteristics of unsaturated hydraulic conductivity[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 327-335. (in Chinese) doi: 10.11779/CJGE20211273
[10] DENG Z P, PAN M, NIU J T, et al. Slope reliability analysis in spatially variable soils using sliced inverse regression-based multivariate adaptive regression spline[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 7213-7226. doi: 10.1007/s10064-021-02353-9
[11] 彭立锋, 苏国韶, 王志成, 等. 基于高斯过程分类与蒙特卡洛模拟的岩土工程结构可靠度分析方法[J]. 科学技术与工程, 2013, 13(21): 6150-6157. doi: 10.3969/j.issn.1671-1815.2013.21.019 PENG Lifeng, SU Guoshao, WANG Zhicheng, et al. Reliability analysis method for geotechnical engineering structure using Gaussian process classification based Monte Carlo simulation[J]. Science Technology and Engineering, 2013, 13(21): 6150-6157. (in Chinese) doi: 10.3969/j.issn.1671-1815.2013.21.019
[12] 邓志平, 邹艺, 潘敏, 等. 考虑多参数空间变异性的非饱和土石坝坝坡可靠度分析[J]. 应用基础与工程科学学报, 2024, 32(4): 1108-1123. DENG Zhiping, ZOU Yi, PAN Min, et al. Reliability analysis of unsaturated earth-rock dam slope considering multi-parameter spatial variability[J]. Journal of Basic Science and Engineering, 2024, 32(4): 1108-1123. (in Chinese)
[13] VANMARCKE E. Random Fields: Analysis and Synthesis[M]. Singapore; Hackensack, NJ: World Scientific, 2010.
[14] GUO X F, DIAS D, PAN Q J. Probabilistic stability analysis of an embankment dam considering soil spatial variability[J]. Computers and Geotechnics, 2019, 113: 103093. doi: 10.1016/j.compgeo.2019.103093
[15] 邓志平, 牛景太, 潘敏, 等. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法[J]. 岩土工程学报, 2019, 41(6): 1083-1090. doi: 10.11779/CJGE201906012 DENG Zhiping, NIU Jingtai, PAN Min, et al. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. (in Chinese) doi: 10.11779/CJGE201906012
[16] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333. doi: 10.1063/1.1745010
[17] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892. doi: 10.2136/sssaj1980.03615995004400050002x
[18] 非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 人民交通出版社, 2023. Standard for Unsaturated Soil Test Method: T/CECS 1337—2023[S]. Beijing: Peoples Transportation Press, 2023. (in Chinese)
[19] LEONG E C, RAHARDJO H. Permeability functions for unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1118-1126. doi: 10.1061/(ASCE)1090-0241(1997)123:12(1118)
[20] FREDLUND D G, MORGENSTERN N R, WIDGER R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321. doi: 10.1139/t78-029
[21] 邓志平, 钟敏, 潘敏, 等. 考虑参数空间变异性和基于高效代理模型的边坡可靠度分析[J]. 岩土工程学报, 2024, 46(2): 273-281. doi: 10.11779/CJGE20221338 DENG Zhiping, ZHONG Min, PAN Min, et al. Slope reliability analysis considering spatial variability of parameters based on efficient surrogate model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 273-281. (in Chinese) doi: 10.11779/CJGE20221338
[22] DUAN N H, LI K C. Slicing regression: a link-free regression method[J]. The Annals of Statistics, 1991, 19(2): 505-530.
[23] LI L X, NACHTSHEIM C J. Sparse sliced inverse regression[J]. Technometrics, 2006, 48(4): 503-510. doi: 10.1198/004017006000000129
[24] HU B, SU G S, JIANG J Q, et al. Uncertain prediction for slope displacement time-series using Gaussian process machine learning[J]. IEEE Access, 2019, 7: 27535-27546. doi: 10.1109/ACCESS.2019.2894807
[25] 李卓, 方艺翔, 鲁洋, 等. 前期降雨与库水位变化对土石坝渗流及稳定特性影响研究[J]. 岩土工程学报, 2022, 44(12): 2177-2186. doi: 10.11779/CJGE202212004 LI Zhuo, FANG Yixiang, LU Yang, et al. Influences of antecedent rainfall and change of reservoir water level on seepage and stability characteristics of earth rock dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2177-2186. (in Chinese) doi: 10.11779/CJGE202212004
[26] 蒋水华, 刘贤, 黄劲松, 等. 考虑水力模型参数空间变异性土石坝边坡可靠度分析[J]. 应用基础与工程科学学报, 2021, 29(4): 939-951. JIANG Shuihua, LIU Xian, HUANG Jinsong, et al. Reliability analysis of slope stability of embankment dams considering spatial variability of hydraulic model parameters[J]. Journal of Basic Science and Engineering, 2021, 29(4): 939-951. (in Chinese)