Continuity hypothesis of soil mechanics and its application in modeling
-
摘要: 为了弥补土力学中缺失连续性假设这一重要理论缺陷,在对多个学科中的连续性概念进行系统地梳理考究的基础上,提出了土力学中连续性假设的恰当表述,进而厘清了土的本构模型的概念、种类、属性和建模思路。研究结果表明:连续介质力学和多孔介质流体动力学的连续性假设为土力学的连续性假设提供了有益参考,但都有一定的缺陷;用混合物理论的观点和方法描述土的连续性比较合适,且可以避开在定义孔隙率时遇到的困扰;“连续”是一个相对的概念,当外部特征尺寸远大于介质内部特征尺寸时,就可以把研究对象看作连续介质;现有土的各种本构模型均以连续介质力学为基础,总体上属于唯象模型。阐明了本构关系的概念、种类和建模思路:本构关系是物质宏观性质的数学模型;土的本构模型包括持水、渗水、渗气、传热、屈服、变形、强度、细观结构演化、热力学效应、相变规律等多方面的内容,而不仅限于应力-应变关系;土的本构关系的研究应针对具体土类,抓住主要影响因素,建立解决主要问题的数学模型。Abstract: In order to make up for the important theoretical defect of its lack in the soil mechanics, the continuity hypothesis is properly put forward on the basis of systematic reviews and studies on the continuity concept in multiple disciplines, and then the concept, category, attribute and modeling idea of the constitutive model for soils are clarified. The results show that the continuity hypotheses in the continuum mechanics and dynamics of fluids in porous media provide useful references for the continuity hypothesis in soil mechanics, but both have certain defects. The viewpoint and method in the theory of mixtures are suitable for describing the continuity of soils, and it can avoid the difficulties encountered in defining the porosity. The continuity is a relative concept. A research object can be regarded as a continuous medium when the external feature size is much larger than the internal feature size of the medium of which the research object is made. The existing constitutive models for soils are all based on the continuum mechanics and generally belong to phenomenological ones. The concept, category and modeling idea of the constitutive relation are clarified, that is, the constitutive relation is a mathematical model for the macro-properties of substances; The constitutive model for soils includes various aspects such as water retention, water permeability, gas permeability, heat transfer, yield, deformation, strength, meso-structure evolution, thermodynamic effects, phase transformation laws, etc., not merely limited to stress-strain relationship. For the studies on the constitutive relation of soils, the specific soil category should be highlighted, the main influencing factors should be grasped, and the mathematical model to solve the main problem should be established.
-
0. 引言
基于连续介质理论和唯象的常规土力学在描述岩土材料非连续性、大变形和破坏等复杂特性方面存在缺陷,笔者[1]在第22讲黄文熙讲座中提出宏微观土力学的概念,为现代土力学研究开启了新视野,从本质上探求岩土材料复杂宏观特性的微细观机理,首先需要探知土体的微细观特性,如土体的微观结构[2]、粒间接触响应[3],颗粒转动[4],颗粒破碎[5],应变局部化[6]等,其主要研究方法包括微观试验方法和离散单元法。而离散单元法等数值模拟方法也需要室内试验结果作为建立模型的依据和验证手段。因此,需要研发相关试验设备,为探求土体宏观力学性质背后的微观机理提供试验基础。
将传统的三轴试验设备与CT扫描设备相结合,是获取岩土材料微细观结构及力学信息的有效方法。许多学者针对不同岩土材料通过研制或使用相应的试验设备结合CT扫描进行了微细观研究。王登科等[7]采用美国通用电气公司生产的煤岩CT扫描系统研究煤体裂隙动态演化,该系统可进行非受载、单轴加载、三轴加载条件下煤岩材料样品的三维细观结构扫描。葛修润等[8]研制出与CT机配套的用于测试煤岩的三轴加载设备,可进行煤岩损伤扩展的动态扫描。陈正汉等[9]将改造后的非饱和土三轴仪平放入卧式CT机中对试样的横断面进行扫描,可进行多种应力路径下的三轴试验,可观测土样的微孔隙、微裂纹,并能追踪试验中裂隙发育成破坏面的演化过程。李小春等[10]利用能和微焦X射线CT系统配套使用的三轴仪,得出细观孔隙结构的变化是导致Berea 砂岩渗透性改变的原因。庞旭卿等[11]利用应力控制式CT-三轴仪对黄土进行常规三轴剪切试验,能够观测到黄土空洞区周围土颗粒的滑移。曹剑秋等[12]利用自主研发的微型三轴仪,研究南京粉砂三轴应力状态下的力学特性,通过显微CT扫描获取试验中试样孔隙变化和颗粒间错动规律。程壮等[13]开发了一台微型三轴试验装置,借助于X射线显微CT及图像处理分析技术,该装置能够实现对砂土微尺寸试样(直径为8 mm,高度为16 mm)在三轴剪切条件下微观特性的无损检测。
三轴剪切试验过程中对试样进行CT扫描已经成为获取岩土材料宏观力学特性背后微细观信息和力学特性的重要试验手段,为了研究土体宏微观力学特性,笔者团队自主研制了适用于CT扫描的微型三轴仪,该仪器测试可靠,兼容性强,操作方便,经济合理,能够进行岩土试样结构内部任意断面完整扫描,实现试验过程中对试样的无损检测。
1. 微型三轴仪研制和特点
本文在常规三轴试验设备的基础上,研制出一种适用于土体宏微观特性测试的微型三轴仪,其研制基本原则是:①通过调研目前工业CT扫描设备内空间大小,发现能够容纳的仪器尺寸有限,常规三轴仪器无法置于其中;②仪器选材除需要轻质和满足强度要求外,为保证CT扫描清晰,压力室宜采用透光性材料且无遮挡;③满足常规三轴仪测试土体力学特性的基本要求,试验结果可靠;④要便于操作,不宜使装样、加载等过程复杂;⑤不影响工业CT设备的其他使用功能,不需要对CT设备进行改装;⑥经济合理,适合于广大青年科研人员开展研究。
1.1 微型三轴仪主要特点
微型三轴仪主要由加载装置和控制采集箱组成,加载装置用以对试样施加荷载,主要包括步进电机,压力室及轴压、孔压传感器等,如图1(a)所示。加载装置高度为40 cm,质量约为10 kg,底座直径为12 cm,能轻便地放置于工业CT扫描设备内,如图1(b)所示,该加载装置通过围压管路、试样顶部排水管路和数据线与外部控制采集箱相连接,控制采集箱包括触摸屏、围压调压舱、反压调压舱及围压传感器和孔压传感器等,如图1(c)所示。试验时通过控制采集箱上的触摸屏及软件进行参数设置和控制加载。试验时不需要对CT设备进行改装,并且不影响CT设备的其他检测功能,试验结束后将主机从CT设备内取出即可。微型三轴仪底座由铝和不锈钢制成,压力室由透光性好的有机玻璃制成,其余部分主要由不锈钢制成,压力室壁厚为5 mm,并且无遮挡部件,压力室半径为35 mm,能够使X射线光源尽可能靠近试样,既能保证微型三轴仪轻便、强度高,而且可以保证试样扫描图像的清晰度,如图2所示。微型三轴仪试样尺寸为直径10 mm,高度20 mm,根据规范[14]可适用于粒径小于1 mm的土体,这满足砂土、粉土、黏土的颗粒要求,适用范围较广,另外由于试样尺寸较小,可对试样整体进行扫描。试验制样时,操作简单,用内径10 mm、高度20 mm的环刀切取土样,装样与常规三轴试验操作一致,不需要额外繁琐的操作步骤和辅助工具。通过将该微型三轴仪与CT扫描相结合,既能得到土样的宏观力学参量,又能获取宏观力学性质背后的微细观结构和力学信息,为数值仿真模拟提供试验依据。该设备属自主研制,经济合理,加工方便,适合广大岩土科研人员特别是青年科研人员使用。
1.2 轴压控制系统
轴压加载通过贯通式步进电机经竖向活塞杆和试样帽将轴向压力施加给试样,加载方式分为应变控制和应力控制,试样扫描过程中能够保持试样的应力状态或位移基本不变。轴向荷载传感器安装在试样下方的底座内,有效地消除了轴向荷载中由活塞杆与活塞螺母之间摩擦力引起的测量误差。但这会导致在围压加载时会引起轴向传感器出现压力值,因此,在试样剪切前需将围压引起的轴向荷载传感器压力值清零,采集系统所记录的即为偏应力值。贯通式步进电机通过数据线与控制采集箱连接,加载过程中实时记录轴向荷载传感器的压力值。
1.3 围压控制系统
压力室通过围压管路与控制采集箱中的围压调压舱连接,试验时首先要将压力室内注满水,通过围压调压舱对试样施加围压,围压允许的最大值为600 kPa,围压的加压速度可以调节,当到达设定围压值时,保持围压稳定。
1.4 反压控制系统
反压控制系统是控制采集箱中的反压调压舱通过反压管路和试样顶部排水管,与试样相连,通过反压调压舱对试样施加反压,反压允许的最大值为600 kPa。同时,该管路也为微型三轴仪的上排水管路,即试样通过上部排水将试样内的水排至反压调压舱内,根据测得的反压调压舱体积变化,作为试样在试验过程中的排水量。
1.5 量测采集系统
量测采集系统包括控制采集箱、轴向荷载传感器、孔隙水压力传感器和数据线。轴向荷载传感器量测步进电机施加到试样上的荷载,经数据线由控制采集箱计算为应力并记录。孔压传感器通过试样下部排水管与试样连接,测得的孔隙水压力经数据线由控制采集箱记录。围压和反压传感器位于相应的调压舱内,用以反馈控制围压和反压稳定。试样的轴向位移由步进电机的丝杆行程计算而得并由控制采集箱记录。
该微型三轴仪是在常规三轴设备的基础上研制而成,满足常规三轴试验的基本功能,结合目前现有的工业CT,通过CT扫描能够获取土体的微观结构和力学信息,扫描结果清晰,数据可靠,同时具备兼容性强,适应性好,操作方便,经济合理等优点,可用于岩土材料宏微观力学特性的研究。
2. 微型三轴仪与常规三轴仪对比试验
2.1 制样
丰浦砂是日本生产的试验用标准砂,本试验采用丰浦砂制作干砂试样,其物理指标见表1。
表 1 丰浦砂物理参数Table 1. Physical parameters of Toyoura sand土粒相对密度Gs 最大孔隙比emax 最小孔隙比emin 2.65 0.977 0.597 根据所要求的孔隙比和试样体积称取一定质量的丰浦砂。干砂制样时,首先将透水石和滤纸放置于试样底座上,将乳胶膜套在透水石和试样底座上,用橡皮筋将乳胶膜和试样底座箍紧,用对开模将乳胶膜箍住,用夹具锁紧,将乳胶膜上端翻下套在对开模上,然后将预先称好的丰浦砂分层均匀装入乳胶膜内,在砂样顶面依次放置滤纸和透水石,确保透水石顶面与对开模顶面齐平,最后装好试样上帽,拆除对开模,制样完成,如图3所示。将压力室外罩轻轻放在压力室底座上,拧紧螺丝防止加围压时压力室漏水。活塞杆轻轻触碰在试样帽顶面,将电机加载杆调节至与活塞杆顶面刚好接触。
2.2 试验方案
按照上述制样和加载步骤,分别进行100,150,200 kPa围压条件下的微型三轴不固结不排水(UU)剪切试验。此外,制备与微型三轴砂样相同孔隙比和相对密实度的常规三轴砂样,即直径为39.1 mm,高度为80 mm的试样,利用常规三轴仪分别进行100,150,200 kPa围压条件下的三轴不固结不排水剪切试验。
2.3 试验结果分析
图4,5为微型三轴仪与常规三轴仪试验及得到的偏应力与轴向应变关系。由图5可知,在不同围压下由微型三轴试验和常规三轴试验得到的应力与应变关系变化规律相似,当应变较小时,偏应力迅速增加,随后偏应力缓慢增加,轴向应变达到5%左右时出现偏应力峰值,随着轴向应变的增加,偏应力逐渐减小,出现应变软化现象。在不同围压下微型三轴试验得到的峰值偏应力与常规三轴试验得到的峰值偏应力接近。另外,通过图4可以看到,微型三轴试验和常规三轴试验分别出现了角度相近的剪切带。
微型三轴试验和常规三轴试验得出的砂样的内摩擦角如表2所示,微型三轴试验得到的两组内摩擦角几乎相等,另外,与常规三轴试验得到的内摩擦角数值接近,误差约为5%,验证了微型三轴仪的可靠性。
表 2 内摩擦角结果比较Table 2. The comparison of the angle of internal friction试验类型 内摩擦角 φ /(°)微型三轴试验 38.67 38.34 常规三轴试验 36.53 误差 5% 3. 结论与展望
本文介绍了基于常规三轴试验设备研发的微型三轴仪,结合CT扫描设备,可用于测试土样的宏微观力学特性,主要结论如下:
(1)该微型三轴仪能够实现常规三轴的基本功能,轻便易携带,能够成功置于工业CT系统设备内进行扫描,试样扫描图像清晰,实现对土样无损检测,数据可靠,操作方便,兼容性强,经济合理。
(2)采用丰浦砂干砂,将微型三轴仪与常规三轴仪进行剪切试验对比,结果表明,微型三轴仪得到的应力应变关系曲线与常规三轴仪基本一致,测得的力学指标误差较小,验证了该微型三轴仪的可靠性。
另外,还需验证该微型三轴仪对黏土的适用性,进而用于深海土三轴试样CT可视化试验,分析土体在三轴剪切应力路径下微细观特征和演化规律,为深海土研究提供实测数据模型。
-
[1] 杜庆华. 材料力学[M]. 北京: 高等教育出版社, 1957. DU Qinghua. Mechanics of Materials[M]. Beijing: Higher Education Press, 1957. (in Chinese)
[2] 孙训方, 方孝淑, 关来泰. 材料力学[M[. 北京: 人民教育出版社, 1979. SUN Xunfang, FANG Xiaoshu, GUAN Laitai. Mechanics of Materials[M]. Beijing: People's Education Press, 1979. (in Chinese)
[3] 铁摩辛柯S, 古地尔J N. 弹性理论[M]. 北京: 人民教育出版社, 1964. TIMOSHENKO S, GOODIER J N. Theory of Elasticity[M]. Beijing: People's Education Press, 1964. (in Chinese)
[4] 王龙甫. 弹性理论[M]. 北京: 科学出版社, 1978. WANG Longfu. Elastic Theory[M]. Beijing: Science Press, 1978. (in Chinese)
[5] 王仁, 熊祝华, 黄文彬. 塑性力学[M]. 北京: 科学出版社, 1998. WANG Ren, XIONG Zhuhua, HUANG Wenbin. Plastic Mechanics[M]. Beijing: Science Press, 1998. (in Chinese)
[6] 成都科学技术大学水力学教研室. 水力学[M]. 北京: 人民教育出版社, 1979. Hydraulics Teaching and Research Section of Chengdu University of Science and Technology. Hydraulics[M]. Beijing: People's Education Press, 1979. (in Chinese)
[7] 吕洪生, 曾新吾. 连续介质力学-中册-流体力学与爆炸力学[M]. 长沙: 国防科技大学出版社, 1999. LÜ Hongsheng, ZENG Xinwu. Continuum Mechanics[M]. Changsha: NUDT Press, 1999. (in Chinese)
[8] ЦЫҬОВИЧ. 土力学[M]. 北京: 地质出版社, 1954. ЦЫҬОВИЧ. Soil Mechanics[M]. Beijing: Geological Publishing House, 1954. (in Chinese)
[9] LAMBE T W, WHITMAN R V. Soil Mechanics, SI Version[M]. New York: Wiley, 1979.
[10] 武汉水利电力学院. 土力学及岩石力学[M]. 北京: 水利电力出版社, 1979. Wuhan Institute of Water Resources and Electric Power. Soil Mechanics and Rock Mechanics[M]. Beijing: China Water & Power Press, 1979. (in Chinese)
[11] 吴天行. 土力学[M]. 成都: 成都科技大学出版社, 1982. WU Tianhang. Soil Mechanics[M]. Chengdu: Chengdu University of Science and Technology Press, 1982. (in Chinese)
[12] 黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983. HUANG Wenxi. Engineering Properties of Soil[M]. Beijing: China Water & Power Press, 1983. (in Chinese)
[13] 斯科特. 土力学及地基基础[M]. 北京: 水利电力出版社, 1983. SCOTT C R. Soil Mechanics and Foundation[M]. Beijing: China Water & Power Press, 1983. (in Chinese)
[14] 松岗元. 土力学[M]. 北京: 中国水利水电出版社, 2001. MATSUOKA H. Soil Mechanics[M]. Beijing: China Water & Power Press, 2001. (in Japanese)
[15] 赵明华. 土力学与基础工程[M]. 3版. 武汉: 武汉理工大学出版社, 2009. ZHAO Minghua. Soil Mechanics and Foundation Engineering[M]. 3rd ed. Wuhan: Wuhan University of Technology Press, 2009. (in Chinese)
[16] 东南大学. 土力学[M]. 2版. 北京: 中国建筑工业出版社, 2005. Southeast University. Soil Mechanics[M]. 2nd ed. Beijing: China Architecture & Building Press, 2005. (in Chinese)
[17] 赵成刚, 白冰. 土力学原理[M]. 北京: 清华大学出版社, 2009. ZHAO Chenggang, BAI Bing. Fundamentals of Soil Mechanics[M]. Beijing: Tsinghua University Press, 2009. (in Chinese)
[18] 河海大学《土力学》教材编写组. 土力学[M]. 3版. 北京: 高等教育出版社, 2019. Compilation Team of the Textbook 《Soil Mechanics》at Hohai University. Soil Mechanics[M]. 3rd ed. Beijing: Higher Education Press, 2019. (in Chinese)
[19] 李广信, 张丙印, 于玉贞. 土力学[M]. 3版. 北京: 清华大学出版社, 2022. LI Guangxin, ZHANG Bingyin, YU Yuzhen. Soil Mechanics[M]. 3rd ed. Beijing: Tsinghua University Press, 2022. (in Chinese)
[20] 同济大学数学教研室. 高等数学(上册)[M]. 北京: 人民教育出版社, 1978. Editor in chief of the Mathematics Teaching and Research Section of Tongji University. Advanced Mathematics (Volume 1) [M]. Beijing: People's Education Press, 1978. ) (in Chinese)
[21] 陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版社, 2022. CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture & Building Press, 2022. (in Chinese)
[22] 冯元桢. 连续介质力学导论[M]. 北京: 科学出版社, 1984. FUNG Y C. Introduction to Mechanics of Continuous Media[M]. Beijing: Science Press, 1984. (in Chinese)
[23] 褚圣麟. 原子物理学[M]. 北京: 高等教育出版社, 1979. CHU Shenglin. Atomic Physics[M]. Beijing: Higher Education Press, 1979. (in Chinese)
[24] FUNG Y C. A First Course in Continuum Mechanics[M]. 3rd ed. Beijing: Tsinghua University Press, 2005.
[25] 北京大学数学力学系几何与代数教研室代数小组. 高等代数[M]. 北京: 人民教育出版社, 1978. The Algebra Group of the Geometry and Algebra Teaching and Research Section of the Department of Mathematical & Mechanics of Peking University. Advanced Algebra[M]. Beijing: People's Education Press, 1978. (in Chinese)
[26] 贝尔. 多孔介质流体动力学[M]. 北京: 中国建筑工业出版社, 1983. BEAR J. Dynamics of Fludis in Porous Media[M]. Beijing: China Architecture & Building Press, 1983. (in Chinese)
[27] HUBBERT M. Darcy's law and the field equations of the flow of underground fluids[J]. Hydrological Sciences Journal-journal Des Sciences Hydrologiques, 1956, 2: 23-59.
[28] BOWEN R M. Theory of Mixtures[M]. New York: Academic Press, 1976.
[29] BOWEN R M. Compressible porous media models by use of the theory of mixtures[J]. International Journal of Engineering Science, 1982, 20(6): 697-735. doi: 10.1016/0020-7225(82)90082-9
[30] BEDFORD A, DRUMHELLER D S. Theories of immiscible and structured mixtures[J]. International Journal of Engineering Science, 1983, 21(8): 863-960. doi: 10.1016/0020-7225(83)90071-X
[31] 陈正汉, 谢定义, 刘祖典. 非饱和土的固结理论[C]// 岩土力学新分析方法讨论会文集, 上海, 1989: 298–305. CHEN Zhenghan, XIE Dingyi, LIU Zudian. Consolidation theory of unsaturated soil[C]// Proceedings of the Conference of New Analysis Methods of Geotechnical Mechanics Seminar, Shanghai, 1989: 298-305. (in Chinese)
[32] 陈正汉. 非饱和土固结的混合物理论——数学模型、试验研究、边值问题[D]. 西安: 陕西机械学院, 1991. CHEN Zhenghan. Mixture Theory of Unsaturated Soil Consolidation: Mathematical Models, Experimental Studies and Boundary Value Problems[D]. Xi'an: Shaanxi Institute of Machinery, 1991. (in Chinese)
[33] 陈正汉, 谢定义, 刘祖典. 非饱和土固结的混合物理论(Ⅰ)[J]. 应用数学和力学, 1993, 14(2): 127-137. CHEN Zhenghan, XIE Dingyi, LIU Zudian. Consolidation theory of unsaturated soil based on the theory of mixture (Ⅰ)[J]. Applied Mathematics and Mechanics, 1993, 14(2): 127-137. (in Chinese)
[34] 陈正汉. 非饱和土固结的混合物理论(Ⅱ)[J]. 应用数学和力学, 1993, 14(8): 687-698. CHEN Zhenghan. Consolidation theory of unsaturated soil based on the theory of mixture (Ⅱ)[J]. Applied Mathematics and Mechanics, 1993, 14(8): 687-698. (in Chinese)
[35] 陈正汉. 岩土力学的公理化理论体系[J]. 应用数学和力学, 1994, 15(10): 901-910. CHEN Zhenghan. Axiomatic theoretical system of geotechnical mechanics[J]. Applied Mathematics and Mechanics, 1994, 15(10): 901-910. (in Chinese)
[36] GREEN A E, NAGHDI P M. A dynamical theory of interacting continua[J]. International Journal of Engineering Science, 1965, 3(2): 231-241. doi: 10.1016/0020-7225(65)90046-7
[37] GREEN A E, NAGHDI P M. On basic equations for mixtures[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1969, 22(4): 427-438. doi: 10.1093/qjmam/22.4.427
[38] 钱伟长. 《现代连续统物理丛书》译序//连续统物理的基本原理[M]. 南京: 江苏科学技术出版社, 1985. CHIEN Weizang. Preface to the Chinese version of《Continnum Physics》//Basic Principle of Continnum Physics[M]. Nanjing: Jiangsu Science and Technology Press, 1985. (in Chinese)
[39] TRUESDELL C, NOLL W. The non-linear field theories of mechanics[M]//The Non-Linear Field Theories of Mechanics/Die Nicht-Linearen Feldtheorien der Mechanik. Berlin: Springer Berlin Heidelberg, 1965: 1-541.
[40] ERIGEN A C. Continuum Physics(Vol. Ⅰ~Ⅳ)[M]. New York: Academic Press, 1971.
[41] ERIGEN A C. Mechanics of Continua[M]. 2nd ed. Malabar: Roberi E Krieger Publishing Company, Inc. 1980.
[42] 郭仲衡. 非线性弹性理论[M]. 北京: 科学出版社, 1980. GUO Zhongheng. Nonlinear Elasticity Theory[M]. Beijing: Science Press, 1980. (in Chinese)
[43] 德冈辰雄. 理性连续介质力学入门[M]. 北京: 科学出版社, 1982. TATSUO Tokuoka. Introduction to Rational Continuum Mechanics [M]. Beijing: Science Press, 1982. (in Japanese)
[44] 朱兆祥, 戴天民. 本构关系[M]//中国大百科全书. 北京: 中国大百科全书出版社, 1985. ZHU Zhaoxiang, DAI Tianmin. Constitutive relationship[M]// Encyclopedia of China. Beijing: China Encyclopedia Publishing House, 1985. (in Chinese)
[45] ROSCOE K H, SCHOFIELD A N. Mechanical behavior of an idealized "wet" clay[C]// Proc 2nd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, 1963.
[46] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211
[47] ROSCOE K H, BURLAND J B. On the generalized stress-strain behaviour of "wet" clay[M]// Engineering Plasticity. Cambrige University, 1968: 535-608.
[48] SCHOFIELD A N, WROTH C P. Critical State Soil Mechanics[M]. Lundon: McGraw-Hill Publishing Company Limited, 1968.
[49] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653. doi: 10.1061/JSFEAQ.0001458
[50] 魏汝龙. 正常压密黏土的塑性势[J]. 水利学报, 1964(6): 9-20. WEI Rulong. The plastic potential of normally consolidated clays[J]. Journal of Hydraulic Engineering, 1964(6): 9-20. (in Chinese)
[51] 黄文熙. 土的弹塑性应力: 应变模型理论[J]. 清华大学学报(自然科学版), 1979, 19(1): 1-26. HUANG Wenxi. Theory of elastoplastic stress-strain models for soils[J]. Journal of Tsinghua University (Science and Technology), 1979, 19(1): 1-26. (in Chinese)
[52] 蒋彭年. 土的本构关系[M]. 北京: 科学出版社, 1982. JIANG Pengnian. Constitutive Relation of Soil[M]. Beijing: Science Press, 1982. (in Chinese)
[53] 陈正汉, 谢定义, 王永胜. 非饱和土的水气运动规律及其工程性质研究[J]. 岩土工程学报, 1993, 15(3): 9-20. doi: 10.3321/j.issn:1000-4548.1993.03.002 CHEN Zhenghan, XIE Dingyi, WANG Yongsheng. Experimental studies of laws of fluid motion, suction and pore pressures in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 9-20. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.03.002
[54] 陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性[J]. 岩土工程学报, 1999, 21(1): 82-90. doi: 10.3321/j.issn:1000-4548.1999.01.018 CHEN Zhenghan. Deformation, strength, yield and water change characteristics of remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.01.018
[55] ERIGEN A C. 《现代连续统物理丛书》中译本序[M]//混合物理论. 南京: 江苏科学技术出版社, 1983. ERIGEN A C. Preface to the Chinese version of《Modern Continuum Physics Series》[M]// Theory of Mixtures. Nanjing: Jiangsu Science and Technology Press, 1983. (in Chinese)
[56] 杨福家. 原子核物理[M]. 2版. 上海: 复旦大学出版社, 2002. YANG Fujia. Nuclear Physics[M]. 2nd ed. Shanghai: Fudan Press, 2002. (in Chinese)
[57] 谢定义, 姚仰平, 党发宁. 高等土力学[M]. 北京: 高等教育出版社, 2008. XIE Dingyi, YAO Yangping, DANG Faning. Advanced Soil Mechanics[M]. Beijing: Higher Education Press, 2008. (in Chinese)
[58] MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. 3rd ed. Hoboken: John Wiley & Sons, 2005.
[59] 谭罗荣, 孔令伟. 特殊岩土工程土质学[M]. 北京: 科学出版社, 2006. TAN Luorong, KONG Lingwei. Special Geotechnical Engineering Soil Science[M]. Beijing: Science Press, 2006. (in Chinese)
[60] 赵成刚, 白冰. 土力学原理[M]. 2版. 北京: 清华大学出版社, 2017. ZHAO Chenggang, BAI Bing. Fundamentals of Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2017. (in Chinese)
[61] 林家翘, 西格尔L A. 自然科学中的确定性问题的应用数学[M]. 北京: 科学出版社, 1986. LIN C C, SIEGEL L A. Applied Mathematics of Deterministic Problems in Natural Science [M]. Beijing: Science Press, 1986. (in Chinese)
[62] 库特纳M L. 天文学—物理新视野[M]. 长沙: 湖南科学技术出版社, 2005. KUTNER M L. Astronomy: A Physical Perspective[M]. Changsha: Hunan Science and Technology Press, 2005. (in Chinese)
[63] BRIAUD J L. Geotechnical Engineering: Unsaturated and Saturated Soils[M]. New York: John Wiley & Sons, Inc., 2013.
[64] 沈珠江. 土体结构性的数学模型——21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. doi: 10.3321/j.issn:1000-4548.1996.01.015 SHEN Zhujiang. Mathematical model of soil structure: the core problem of soil mechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.01.015
[65] 沈珠江. 现代土力学的基本问题[J]. 力学与实践, 1998, 20(6): 1-6. SHEN Zhujiang. The basic problems of modern soil mechanics [J]. Mechanics and Practice, 1998, 20(6): 1-6. (in Chinese)
[66] 沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000. SHEN Zhujiang. Theoretical Soil Mechanics[M]. Beijing: China Water & Power Press, 2000. (in Chinese)
[67] KACHANOV L M. Introduction to Continuum Damage Mechanics[M]. The Netherlands: Martinus Nijhoff Publisher, Dordrecht, The Netherlands, 1986.
[68] JEAN L. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1): 83-89. doi: 10.1115/1.3225775
[69] CHABOCHE J L. Continuum damage mechanics: present state and future trends[J]. Nuclear Engineering and Design, 1987, 105(1): 19-33. doi: 10.1016/0029-5493(87)90225-1
[70] CHABOCHE J L. Continuum damage mechanics[J]. Journal of Applied Mechanics, 1988, 55: 59-72. doi: 10.1115/1.3173661
[71] 陈正汉. 关于土力学理论模型与科研方法的思考[J]. 力学与实践, 2003, 25(6): 59-62. doi: 10.3969/j.issn.1000-0879.2003.06.018 CHEN Zhenghan. Thoughts on theoretical model and scientific research method of soil mechanics[J]. Mechanics and Engineering, 2003, 25(6): 59-62. (in Chinese) doi: 10.3969/j.issn.1000-0879.2003.06.018
[72] 陈正汉. 关于土力学理论模型与科研方法的思考(续)[J]. 力学与实践, 2004, 26(1): 63-67. doi: 10.3969/j.issn.1000-0879.2004.01.020 CHEN Zhenghan. Thoughts on theoretical model and scientific research method of soil mechanics (continued)[J]. Mechanics and Engineering, 2004, 26(1): 63-67. (in Chinese) doi: 10.3969/j.issn.1000-0879.2004.01.020
[73] 陈正汉. 非饱和土与特殊土力学: 理论创新、科研方法及治学感悟[M]. 北京: 科学出版社, 2021: 193-213. CHEN Zhenghan. Unsaturated Soil and Special Soil Mechanics: Theoretical Innovation, Scientific Research Methods and Academic Understanding[M]. Beijing: Science Press, 2021: 193-213. (in Chinese)
-
期刊类型引用(2)
1. 王凯,付强,徐超,艾子博,王磊,舒龙勇. 考虑射束硬化的煤岩CT数据阈值分割方法及应用. 煤田地质与勘探. 2023(04): 11-22 . 百度学术
2. 黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 . 百度学术
其他类型引用(2)