Rheological properties and filter-cake formation performances of slurry containing walnut shell in high-permeability sand stratum
-
摘要: 泥水盾构在高渗透地层带压开舱时常遇到泥浆漏失及泥膜闭气性不足导致的开挖面失稳问题。由于颗粒密度大、界面结合性弱,传统的含砂泥浆分散稳定性较差,成膜质量欠佳。提出了一种以轻质有机材料核桃壳为添加颗粒的新型盾构泥浆,为了研究该泥浆在高渗透地层的成膜及闭气效果,自主研发了泥浆渗透-成膜-闭气的全过程试验系统,开展了含核桃壳泥浆的流变、渗透成膜及泥膜闭气特性测试试验,分析了核桃壳改善成膜质量的作用机理。结果表明:核桃壳与膨润土泥浆的匹配性较好,可明显提高泥浆的胶体率和分散稳定性,同时保证了较高的凝胶强度和良好的流动性。与含砂泥浆相比,核桃壳颗粒的增稠效果和颗粒间的软接触模式使高渗透地层的泥浆成膜更容易,泥膜致密性和耐高气压能力也有明显提升。Abstract: In the high-permeability stratum, the slurry shield often encounters the problems of slurry leakage and poor air-tightness of filter cakes, leading to the instability of excavation face. Due to the high particle density and weak interfacial bonding, the traditional slurry containing sand has poor dispersion stability and poor filter-cake quality. In this study, a new type of shield slurry with walnut shell as the additive particle is proposed. In order to study the filter-cake formation and airtightness effects of the slurry in the high-permeability stratum, the whole process test system for the slurry permeation, filter-cake formation and air tightness is developed, and the tests on the rheology, slurry permeation and airtightness characteristics of the slurry containing walnut shell are performed. The mechanism of improving the filter-cake formation quality by the walnut shell is analyzed. The results show that the matching between the walnut shell and the bentonite slurry is better, which can obviously improve the colloidal ratio and dispersion stability of slurry, and ensure high gel strength and good fluidity. Compared with those of the slurry containing sand, the thickening effects of the walnut shell particles and the soft contact mode between particles make the slurry filter-cake formation in high-permeability stratum easier, and the density and high pressure resistance of the slurry filter cakes are also significantly improved.
-
Keywords:
- shield slurry /
- property /
- walnut shell /
- particle plugging /
- high permeability stratum
-
-
表 1 泥浆基本性质参数
Table 1 Basic parameters and properties of slurry
泥浆编号 粗颗粒材料 添加量/(g·L-1) 密度/(g·cm-3) 漏斗黏度/s 胶体率/% ST0 — 0 1.075 35 83.5 ST1 0.15~0.2 mm核桃壳 10 1.082 55 87.0 ST2 20 1.086 61 90.0 ST3 30 1.090 65 92.0 ST4 40 1.092 68 88.0 ST5 0.15~0.2 mm砂 10 1.082 49 81.0 ST6 20 1.093 52 87.0 ST7 30 1.100 57 90.0 ST8 40 1.106 51 88.4 表 2 中低剪切速率区幂律模型拟合结果
Table 2 Fitting results by power law model at low and medium shear rates
核桃壳含量/(g·L-1) 幂律模型τ=Kγn n K/(Pa·s) R2 0 0.270 0.995 0.993 10 0.166 2.454 0.841 20 0.142 2.736 0.843 30 0.168 2.915 0.832 40 0.157 2.163 0.883 表 3 高剪切速率区Bingham模型拟合结果
Table 3 Fitting results by Bingham at high shear rates
核桃壳含量/(g·L-1) Bingham模型τ=τ0+μγ τ0/Pa μ/(Pa·s) R2 0 2.024 0.0038 0.995 10 3.102 0.0059 0.998 20 3.444 0.0064 0.989 30 3.601 0.0067 0.982 40 3.360 0.0072 0.999 表 4 泥膜闭气值汇总表
Table 4 Threshold pressures of airtightness of filter cakes
添加量/(g·L-1) 泥膜闭气值/kPa 核桃壳 砂 10 30 — 20 90 30 30 150 90 40 60 30 -
[1] 洪开荣. 盾构与掘进关键技术[M]. 北京: 人民交通出版社, 2018. HONG Kairong. Key Technologies for Shield Machine and Tunnelling[M]. Beijing: China Communication Press, 2018. (in Chinese)
[2] FRITZ P. Additives for slurry shields in highly permeable ground[J]. Rock Mechanics and Rock Engineering, 2007, 40(1): 81-95. doi: 10.1007/s00603-006-0090-y
[3] WANG Z K, WANG Y, FENG D, et al. Effects of slurry viscosity and particle additive size on filter cake formation in highly permeable sand[J]. Underground Space, 2022, 7(2): 151-161. doi: 10.1016/j.undsp.2021.06.002
[4] 郑志锋, 邹局春, 花勃, 等. 核桃壳化学组分的研究[J]. 西南林学院学报, 2006, 26(2): 33-36. ZHENG Zhifeng, ZOU Juchun, HUA Bo, et al. Study on the constituents of walnut shell[J]. Journal of Southwest Forestry College, 2006, 26(2): 33-36. (in Chinese)
[5] HILAL N, MOHAMMED ALI T K, TAYEH B A. Properties of environmental concrete that contains crushed walnut shell as partial replacement for aggregates[J]. Arabian Journal of Geosciences, 2020, 13(16): 812. doi: 10.1007/s12517-020-05733-9
[6] 王建莉, 郑志军, 张丽君, 等. 随钻堵漏材料研究进展[J]. 精细石油化工进展, 2012, 13(9): 8-10. doi: 10.3969/j.issn.1009-8348.2012.09.003 WANG Jianli, ZHENG Zhijun, ZHANG Lijun, et al. Research progress on plugging material in drilling fluid[J]. Advances in Fine Petrochemicals, 2012, 13(9): 8-10. (in Chinese) doi: 10.3969/j.issn.1009-8348.2012.09.003
[7] KOK M V, BATMAZ T, GUCUYCNER I H. Rheological behavior of bentonite suspensions[J]. Petroleum Science and Technology, 2007, 5(18): 519-536.
[8] GARECHEA M, AZRI N, ALLAL A, et al. Colloidal behavior of aqueous montmorillonite suspensions in the presence of non-ionic polymer[J]. Journal of Physics: Conference Series 602012006, 2015: 1-8.
[9] ABU-JDAYIL B. Rheology of sodium and calcium bentonite-water dispersions: effect of electrolytes and aging time[J]. International Journal of Mineral Processing, 2011, 98(3): 208-213.
[10] BELBSIR H, EL-HAMI K, SOUFI A. Study of the rheological behavior of the phosphate-water slurry and search for a suitable model to describe its rheological behavior[J]. International Journal of Mechanical & Mechatronics Engineering, 2018, 18(4): 73-81.
[11] CHI T E, BAI R B. An assessment of the conventional cake filtration theory[J]. Chemical Engineering Science, 2003, 58(7): 1323-1336. doi: 10.1016/S0009-2509(02)00655-3
[12] 刘成, 陆杨, 刘磊, 等. 加砂泥浆在砂性地层中的堵塞机制及成膜结构分析[J]. 现代隧道技术, 2018, 55(5): 245-253. LIU Cheng, LU Yang, LIU Lei, et al. Analysis of clogging mechanism and filter-cake structure of slurry containing coarse-particle materials in sandy strata[J]. Modern Tunnelling Technology, 2018, 55(5): 245-253. (in Chinese)
[13] 刘成, 孙钧, 杨平, 等. 泥膜形成与状态划分细观分析及模型试验研究[J]. 岩土工程学报, 2014, 36(3): 435-442. doi: 10.11779/CJGE201403005 LIU Cheng, SUN Jun, YANG Ping, et al. Mesoscopic analysis and model test on formation process and state division of slurry membrane[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 435-442. (in Chinese) doi: 10.11779/CJGE201403005
[14] 加瑞, 朱伟, 闵凡路. 泥浆颗粒级配和地层孔径对泥水盾构泥膜形成的影响[J]. 中国公路学报, 2017, 30(8): 100-108. doi: 10.3969/j.issn.1001-7372.2017.08.011 JIA Rui, ZHU Wei, MIN Fanlu. Effect of particle size distribution of slurry and pore size of stratum on formation of filter cake in slurry shield[J]. China Journal of Highway and Transport, 2017, 30(8): 100-108. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.011
[15] 刘成, 郭建祥, 陆杨, 等. 泥浆粗粒材料对泥水盾构泥膜闭气时间的影响[J]. 中国科技论文, 2017, 12(13): 1508-1513. doi: 10.3969/j.issn.2095-2783.2017.13.012 LIU Cheng, GUO Jianxiang, LU Yang, et al. Effects of coarse material in slurry on the airtightness time for the filter cake in slurry shield tunneling[J]. China Sciencepaper, 2017, 12(13): 1508-1513. (in Chinese) doi: 10.3969/j.issn.2095-2783.2017.13.012
[16] MIN F, ZHU W, HAN X. Filter cake formation for slurry shield tunneling in highly permeable[J]. Tunnelling and Underground Space Technology, 2013(38): 423-430.
[17] 崔茂荣, 马勇. 钻井液触变性评价方法的合理性探索[J]. 钻井液与完井液, 2006, 23(1): 24-26, 86-87. doi: 10.3969/j.issn.1001-5620.2006.01.006 CUI Maorong, MA Yong. Study on rationality of the evaluation method for the thixotropy of drilling fluids[J]. Drilling Fluid & Completion Fluid, 2006, 23(1): 24-26, 86-87. (in Chinese) doi: 10.3969/j.issn.1001-5620.2006.01.006
[18] 杨扶银. 粗粒土泥浆渗透特性及泥皮抗渗性研究[D]. 西安: 西安理工大学, 2007. YANG Fuyin. Research on the Seepage Characteristics of Slurry Through Coarse-Grained Soil and Impervious Characteristics of Slurry Cake[D]. Xi'an: Xi'an University of Technology, 2007. (in Chinese)
[19] WANG S R, DAI G X, YANG H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. doi: 10.1016/j.pecs.2017.05.004
-
其他相关附件