Loading [MathJax]/jax/output/SVG/fonts/TeX/Size1/Regular/Main.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高压实膨润土与孔隙溶液物理作用机制研究进展

廖饶平, 陈永贵, 刘聪, 叶为民, 乌东北, 王琼

廖饶平, 陈永贵, 刘聪, 叶为民, 乌东北, 王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展[J]. 岩土工程学报, 2024, 46(12): 2465-2475. DOI: 10.11779/CJGE20230811
引用本文: 廖饶平, 陈永贵, 刘聪, 叶为民, 乌东北, 王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展[J]. 岩土工程学报, 2024, 46(12): 2465-2475. DOI: 10.11779/CJGE20230811
LIAO Raoping, CHEN Yonggui, LIU Cong, YE Weimin, WU Dongbei, WANG Qiong. Advances in physical interaction mechanism between highly compacted bentonite and pore solution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2465-2475. DOI: 10.11779/CJGE20230811
Citation: LIAO Raoping, CHEN Yonggui, LIU Cong, YE Weimin, WU Dongbei, WANG Qiong. Advances in physical interaction mechanism between highly compacted bentonite and pore solution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2465-2475. DOI: 10.11779/CJGE20230811

高压实膨润土与孔隙溶液物理作用机制研究进展  English Version

基金项目: 

国家自然科学基金项目 42125701

国家自然科学基金项目 41977232

国家自然科学基金项目 42030714

上海市教委科研创新计划项目 2023ZKZD26

中央高校基本科研业务费 

土木工程Ⅰ类高峰学科建设经费 2022-3-ZD-08

详细信息
    作者简介:

    廖饶平(1993—),男,博士研究生,主要从事环境地质与非饱和土力学研究。E-mail: lrp_liao@tongji.edu.cn

    通讯作者:

    陈永贵, E-mail: cyg@tongji.edu.cn

  • 中图分类号: TU413

Advances in physical interaction mechanism between highly compacted bentonite and pore solution

  • 摘要: 作为高放废物处置库的工程屏障,高压实膨润土在长期服役过程中将受到围岩地下水及其化学成分的渗入作用,膨胀性能不断衰减,最终威胁处置安全。在阐述孔隙溶液对高压实膨润土水化膨胀过程影响规律的基础上,总结了高压实膨润土与孔隙溶液物理作用机制的最新研究成果。结果表明,孔隙溶液对高压实膨润土的物理作用机制包括晶层膨胀、扩散双电层膨胀和吸附作用等3种。其中,孔隙溶液对晶层膨胀的作用与浓度有关,低浓度时表现为促进作用,高浓度时表现为抑制作用,取决于孔隙溶质吸力与临界吸力的差;孔隙溶液对扩散双电层的抑制作用是导致有效孔隙通道扩大、渗透和扩散系数增大的主要原因;pH对膨润土表面活性位点和核素水解的影响是引起吸附特性变化的主要原因,背景离子的竞争吸附作用致使膨润土对核素离子的吸附量显著减少。目前,孔隙溶液作用的参数概化、有效孔隙量化和吸附化学模型的研究仍有不足。因此,进一步优化本构模型中孔隙溶液作用的化学参数,明确不同尺度孔隙的等效量化研究,构建约束条件下压实膨润土多组分竞争吸附模型仍是今后需要深入研究的重点方向。
    Abstract: The swelling performance of highly compacted bentonite deteriorates due to infiltrating rock groundwater and chemical components during its long-term operation, ultimately posing a threat to disposal safety. The recent researches on the physical interaction between compacted bentonite and pore solution are reviewed based on the phenomena related to the influences of the pore solution on buffering properties. The results show that the physical mechanism of the pore solution on highly compacted bentonite includes swelling of crystal layer, swelling of diffusion double layers and adsorption effects. The effects of the pore solution on the swelling of crystal layer are related to its concentration, and they are promoted at low concentration and inhibited at high concentration, which depends on the difference between the suction and the critical suction of the poresolution. The inhibition of the pore solution on the swelling of double layers is the main factor for the enlarged pore channels, higher permeability and diffusion coefficients. The pH change and nuclide hydrolysis alter the adsorption characteristics, while the competitive background ion adsorption reduces the nuclide capacity of bentonite. The current shortcomings include parameter generalization for pore solution effects, effective porosity quantification and adsorption models. Therefore, the further optimization of chemical parameters of pore solution in the constitutive model, the clarification of the equivalent quantification of the pores at different scales, and the establishment of a multi-component competitive adsorption model under the constraint of compacted bentonite are still the key directions for the further researches in the future.
  • 桩基础作为一种常见的建筑物基础形式其荷载传递形式、内力响应分析、桩土相互作用、桩侧摩阻力分析等问题一直以来都是研究的热点问题[1-12],准确掌握桩侧阻力、桩端阻力、桩身轴力及桩周土沉降量等响应指标对桩基础的设计至关重要。相关学者近年来对该问题进行了深入研究,取得了广泛的成果,但相关研究在计算或试验当中考虑桩土固结位移时均按经典达西定律考虑土体固结沉降,并未考虑土中孔隙水压力的非达西流性质。

    近年来,针对非达西流动的土体固结沉降研究越来越引起学者的重视。于光明等[13]基于非达西流动定律推导得出一维固非线性方程,得出超孔隙水压数值解答,建立了桩周土体固结沉降计算模型,进而通过荷载传递法得出桩基础的各项响应指标;刘忠玉等[14]通过引入非达西定律修正了砂井地基固结方程,用隐式有限差分法进行了数值求解;刘忠玉等[15]为讨论黏性土变形的黏弹塑性和非达西流影响效应,引入了统一硬化本构模型和非达西定律,修正了一维太沙基固结方程,并给出了数值解答;于光明等[16]通过引入非达西定律建立了考虑固结和流变共同作用下的软土地基变形沉降计算模型,研究结果表明考虑固结流变共同作用对单桩承载力的不利影响非常重要。

    针对目前在黄土地区鲜有考虑土体非达西流性质的情况,本文通过引入非达西流定律,并考虑桩周土层的非线性,建立改进的一维太沙基固结方程,进而通过荷载传递法求解超长桩的桩侧阻力、桩身轴力等,并通过某桩基础浸水试验对本文提出的计算方法进行验证分析。

    本文假设:①桩周土体假设为各向同性的非均质土;②孔隙水压力不可压缩,且仅考虑在径向渗流;③桩周土体为弹性体,不考虑塑性和蠕变特性;④桩侧剪应力微段内均匀分布;⑤桩体为弹性体;⑥土体固结过程中孔隙水按非达西流体考虑。

    当土中水力梯度较低时,土中的水流流动不符合传统的达西定律,而是按照非达西流定律进行流动。本文在前人研究的基础上拟采用的非达西流定律[17],其计算流速的方程为

    v=k[ii0(1eii0)]
    (1)

    式中,v为渗流流速,k为土渗透系数,i为水力梯度,i0为临界水力梯度。

    非达西流定律描述的问题可以归结为:当土中水利梯度小于临界水力梯度时,土中水的渗流体现为非达西流规律;当大于或等于临界水利,该模型即退化为达西定律。

    水力梯度和孔隙水压力的关系为

    i=1γwuz
    (2)

    将式(1)代入式(2)中,即可得到一组关于孔隙水压力和土中水流速的关系:

    v=k[1γwuzi0(1ei0γwuz)]
    (3)

    根据单位时间内单元土体排水量等于单位土体体积与流速沿深度方向速度的变化量的乘积,

    dq=vzΔV
    (4)

    式中,ΔV为单位土体体积。

    而单位体积土体内的流量差为

    Vt=ΔV1+eavut
    (5)

    最后,在一维固结且只考虑径向渗流的情况下,令式(4),(5)相等,得到:

    vzΔV=ΔV1+eavut
    (6)

    将式(3)代入到式(6)当中得

    k(1γw2uz2+i20γw2uz2ei0γwuz)ΔV=ΔV1+eavut
    (7)

    式中,k为土体渗透系数,γw为水的重度,i0为临界水力梯度,e为土体的孔隙比,av为土体的压缩系数ΔV为土体微元体积,avxΔyΔz

    式(7)即为考虑非达西流影响的土中孔隙水压力的计算表达式。

    根据泰勒展开式原理,现对式(7)进行简化。参照泰勒展开式处理ex=1-x的原理,式(7)可表示为

    ki30γ2w3uz3(kγw+ki20γw)2uz2av1+eut=0
    (8)

    由于已假定孔隙水压力不可压缩,且仅考虑径向渗流,故可考虑孔隙水压力仅与径向与时间相关,记为u(z, t),并令ki30γ2w=A(kγw+ki20γw)=Bav1+e=C,则式(8)转化为

    A3u(z,t)dz3+B2u(z,t)dz2+Cu(z,t)dt=0
    (9)

    式(9)为一个三阶偏微分方程,整理后可得

    u(z,t)dt=AC3u(z,t)dz3BC2u(z,t)dz2
    (10)

    可考虑采用中心差分法对上述孔隙水压力关于时间和空间的偏导数进行近似代替后变为

    ui,j+1=Δ(t)Ch2{Ah[ui+2,j3(ui+1,jui,j)ui1,j]+              B(ui+1,j2ui,j+ui1,j)}+ui,j 
    (11)

    式中,ui, j为沿土层深度方向第i点在第j时刻的孔隙水压力,Δ(t)为一个时间增量,h为任一土层的厚度。

    根据现场试验的地质条件,可认为场地排水条件为单面排水(上部排水,下部不排水)本计算方法拟定的初始条件及边界条件为

    u(0,t)=0u(z,0)=qu(z,t)z(z=H,t)=0}
    (12)

    根据通解(11)及边界初始条件(12),即可求解土中任意点的孔隙水压力值。

    根据土体沉降的定义,可认为土体的最终沉降量是基于沿桩身长度所有单位土体应变量的总和,而根据基本假设,认为桩周土体为弹性体,故土体的应力应变关系符合胡克定律,

    wc=H0εz(z,t)dz
    (13)

    将土体沉降连续方程根据土层的分布情况离散化,即认为

    wc=H0εz(z,t)dz=ni=1εz(z,t)h
    (14)

    而土体在某一时刻、某一深度处的应变可以根据胡克定律表示为

    ni=1εz(z,t)=ni=1σi(z,t)Ei
    (15)

    式中,n为桩周土层数,σi(z,t)为桩周土体有效应力,根据有效应力原理,σi(z,t)可表示为

    σi(z,t)=qu(z,t)
    (16)

    将式(11)代入式(16)即得土体有效应力,再将式(16)代入式(15)得土体的分层应变总和,最后将式(15)代入式(14)即获得土体的最终沉降量。

    依据桩土相对位移的定义:

    wpwc=τr0rmr0dzGs1z
    (17)

    对式(17)进行简单处理后得

    τ=k(wpwc)
    (18)

    式中,k为桩侧剪切刚度,k=Gs1r0ln(rm/r0)r0为桩身半径,rm为桩的最大影响半径。其计算方法按区分端承桩[18]与摩擦桩[19]进行确定。

    然后根据桩身轴向荷载与桩单元变形之间的平衡关系:

    wp(z)z=P(z)EpAp
    (19)

    根据桩身单元平衡关系,任取一个桩身单元,其上下截面桩身压缩量与轴力合力之间的关系:

    wp(i)wp(i+1)=(P(i)+P(i+1))hi2EpAp
    (20)

    式中,hi为任取桩单元的厚度。代入到式(18)中即得桩侧剪切应力函数式(20)。

    根据选定的任意桩单元平衡关系,侧阻力和桩身轴力之间的关系为

    P(z)z=2πr0τ(z)
    (21)

    对式(21)进行积分,并根据任意桩单元平衡关系,可得式(21)的离散表达形式:

    P(i+1)P(i)=2πr0zi+1ziτ(z)dz
    (22)

    然后,依据式(18)得出的桩侧剪切函数代入到式(22)中,即可得出桩身任意截面出的轴力表达式。至此,桩身的荷载传递关系全部得出。

    本试验场地地层均匀且简单,桩长范围内主要为黄土状粉土,具有Ⅱ~Ⅳ级自重湿陷性,湿陷系数为0.001~0.065;粉土层下部为砂砾和泥岩,各土层主要性质如表 1所示。

    表  1  场地土层特性
    Table  1.  Properties of soils
    土层名称 厚度/m 压缩模量/MPa 地基承载力特征值/kPa
    黄土状粉土层1 20左右 3.5~7.5 100~120
    黄土状粉土层2 10左右 11.5 160
    砂砾层 2.8~4.9 25.0 320
    泥岩 未穿透 38.0 400
    下载: 导出CSV 
    | 显示表格

    本试验用桩桩径0.8 m,桩长26 m。以试验桩为中心设置一个直径约为3.0 m的浸水坑,坑深约1.0 m,浸水试验时水头基本与地表平行,为加速浸水速率,在桩周每45°设置一个PVC注水管,管上钻有注水孔,试验布置如图 1所示。

    图  1  浸水装置
    Figure  1.  Immersion device

    为监测浸水状态下的桩身响应,沿试桩深度共计布置22组钢筋应力计,15组混凝土应变计;在桩端均匀布置4个压力盒;在0~-14.5 m范围内每隔2 m布置一个分层沉降计,共计布置7组(图 23)。

    图  2  浸水试验
    Figure  2.  Immersion tests
    图  3  传感器埋设
    Figure  3.  Embedment of sensors

    试验过程中先进行了静载试验,之后进行浸水试验,由于本文理论只计算非达西渗流的负摩阻力,故下文中的摩阻力和轴力变化曲线均为静载试验之后与浸水试验之后的差值曲线。

    (1)土体沉降计算对比

    由于试验采用桩顶浸水和桩周注水孔分段渗透导致桩周土分段湿陷,故随着土层深度的增加,土体的沉降规律出现了多峰值状态。因此,在计算分析过程中可按照分段计算的原则来提高计算精度,即可认为将桩分割成为多段桩进行分析。由于本次试验的分层沉降计只设置到桩顶向下14 m处,故为保持与理论计算数值的一致性,图 4中并未标出14~22 m处的土体沉降数值。试验选取的曲线为第13天时土体最大沉降量时的曲线。

    图  4  土体沉降沿深度变化曲线
    Figure  4.  Variation curves of soil settlement along depth

    图 4可以看出,依据非达西流计算方法得出的土体沉降曲线与试验所得结果基本一致,误差较小。依据非达西流计算方法得出的最大值为223.78 mm,试验最大值为220.72 mm,而依据达西流计算方法得出的最大值为240.12 mm。由此可以看出依据达西流计算方法得出的数值最大,这是由于虽然非达西定律只对孔隙水压力消散的快慢有影响,对最终固结完成时的孔隙水压力消散没有影响,但在浸水至第13天时,土体并未完成固结沉降,而达西定律对孔隙水压力的消散要快于非达西定律,故而产生的土体沉降在此时要大于非达西定律产生的土体沉降。

    (2)桩身侧摩阻力计算对比

    由于浸水方式的特殊性,本试验结果与传统的桩侧摩阻力分布结果不同。本试验结果显示:侧摩阻力沿桩身存在多个零点,即负摩阻力沿桩长呈现出多峰值状,导致正、负摩阻力出现交错分布状,其负摩阻力峰值分别为314,228,312 kPa;其正摩阻力峰值分别为87.4,235,121,473 kPa。同样选取浸水第13天的桩身侧摩阻力进行分析。

    图 5为桩侧摩阻力沿深度变化曲线。由图 5可以看出,依据达西流定律计算得出的桩侧负摩阻力最大,峰值分别为348,295,104,368 kPa,正摩阻力最小,峰值分别为78.4,212,101,421 kPa;依据非达西流定律计算得出的桩侧正摩阻力最大,峰值分别为90.4,288,185,589 kPa,负摩阻力最小,其峰值分别为278,192,102,242 kPa。这主要是由于在桩周土体并未达到固结状态下,依据达西流定律计算得出的土体沉降量最大,故而产生的下拉荷载最大,对桩周产生的负摩阻力峰值也就最大;反之,依据非达西流定律计算得出的土体沉降量最小,桩土相对位移最小,故而产生的负摩阻力峰值也就最小,正摩阻力峰值最大。

    图  5  桩侧摩阻力沿深度变化曲线
    Figure  5.  Variation curves of side friction of pile along depth

    (3)桩身轴力计算对比

    图 6为桩身轴力沿深度的变化曲线由。图 6可以看出,桩身最大轴力发生在中性点处,其分布曲线由于土体沉降为分段沉降,进而也出现了多个峰值状态,这主要是由于黄土遇水湿陷后,不同土层先后发生湿陷,导致出现多个湿陷层,因而出现了多个轴力的峰值点即轴力的极值点,极值分别发生在4,7,12.5,16 m深度处,其峰值分别为5180,5890,3490,5450 kN。

    图  6  桩身轴力沿深度变化曲线
    Figure  6.  Variation curves of axial force of pile along depth

    依据达西流定律计算得出的桩身轴力最大,这主要是由于按照达西定律计算得出的桩侧负摩阻力最大,故而产生的下拉荷载也最大,故而其轴力也最大,其峰值分别为5540,6210,3510,5740 kN。依据非达西流定律得出的桩身轴力最小,其变化趋势依然是多峰值状态,其峰值分别为4710,5450,3250,5120 kN。这是由于在土体未达到固结状态下的某一时间点,依据非达西流定律得出的孔隙水压力最小,孔隙水压力消散速度慢于按照达西流定律的计算结果,故其土体的有效应力较小,进而导致土体沉降量较小,桩侧负摩阻力较小,故而下拉荷载较小,最终导致桩身的轴力也较小。

    (1)本文建立的考虑非达西流影响下的侧摩阻力曲线与现场试验结果吻合性较好,证明本文提出的计算方法合理可行,可为类似地区桩基础设计提供参考。

    (2)传统达西流计算得出的流速较大,导致孔隙水压力在未固结的某一时间点消散速度快于非达西流计算结果,这是达西流计算结果存在偏差的主要原因。

    (3)与非达西流动结果相比,传统达西定律推算得出的桩侧正摩阻力值偏小,未能充分发挥桩侧正摩阻力和桩基础承载力,造成较大浪费,故在计算桩侧阻力及分析桩周土变形规律时考虑非达西流影响十分必要。

  • 图  1   高放废物深地质处置库及多重屏障缓冲示意图

    Figure  1.   Schematic diagram of deep geological repository and multiple barrier buffer for high-level waste

    图  2   高压实膨润土微观结构组成[24]

    Figure  2.   Microstructural composition of highly compacted bentonite[24]

    图  3   不同吸力下压实膨润土膨胀力时程曲线[31]

    Figure  3.   Time-swelling pressure curves with increase of suction[31]

    图  4   吸力对蒙脱石水化层间距和层叠体厚度的影响[25-26]

    Figure  4.   Effects of suction on interlayer distance and laminate thickness of montmorillonite[25-26]

    图  5   膨润土水化膨胀机制

    Figure  5.   Hydration swelling mechanism of bentonite

    图  6   溶液作用下膨胀力三阶段演化特征[30]

    Figure  6.   Three stages of swelling pressure hydrated with salt solutions[30]

    图  7   溶液对膨润土最终膨胀力的影响[35-39]

    Figure  7.   Effects of ion species and concentration on final swelling pressure of compacted bentonite[35-39]

    图  8   层叠体颗粒受力平衡示意图

    Figure  8.   Schematic diagram of stress balance of layered particles

    图  9   离子类型和浓度对膨润土膨胀指数的影响[15, 43]

    Figure  9.   Effects of ion species and concentration on free swell index of bentonite[15, 44]

    图  10   溶液浓度与渗透吸力的关系[45]

    Figure  10.   Relationship between concentration of different solutions and osmotic suction[45]

    图  11   离子类型对高压实膨润土膨胀力的影响[16]

    Figure  11.   Effects of ion species on final swelling pressure of compacted bentonite[16]

    图  12   离子类型对高压实膨润土膨胀变形的影响[15]

    Figure  12.   Effects of ion species on final swelling deformation of compacted bentonite[15]

    图  13   Stern理论扩散双电层构造[45]

    Figure  13.   Diffusion double-layer structure of Stern theory[45]

    图  14   离子类型及浓度对膨润土饱和渗透系数的影响[46]

    Figure  14.   Effects of ion species and concentrations on saturation permeability coefficient of compacted bentonite[46]

    图  15   离子强度对膨润土中核素离子扩散的影响[47]

    Figure  15.   Effects of ionic strength on diffusion of nuclides[47]

    图  16   蒙脱石表面吸附作用示意图[49]

    Figure  16.   Schematic diagram of surface adsorption of montmorillonite[49]

    图  17   pH对GMZ-Na基膨润土吸附核素的影响[52-56]

    Figure  17.   Effects of pH on adsorption of nuclides by GMZ-Na bentonite[52-56]

    图  18   不同温度中U(Ⅵ)离子形态分布随pH的变化[49]

    Figure  18.   Species distribution of U(Ⅵ) ions with pH change under different temperatures[49]

    图  19   离子强度对GMZ-Na基膨润土吸附U(Ⅵ)的影响[54]

    Figure  19.   Effects of ionic strength on adsorption of U(Ⅵ) ions by GMZ-Na bentonite[54]

    图  20   阴阳离子类型对GMZ-Na基膨润土吸附U(Ⅵ)的影响[54]

    Figure  20.   Effects of cationic and anion species on adsorption of U(Ⅵ) by GMZ-Na bentonite[54]

    图  21   背景离子类型对U(Ⅵ)吸附分配系数的影响[60]

    Figure  21.   Effects of ion species on equilibrium constants of U(Ⅵ) [60]

    表  1   Na基膨润土表面活性位点的反应机制[51]

    Table  1   Reactions of active sites on Na-bentonite[51]

    表面活性位点反应 双层模型参数(lgK) 非静电模型参数(lgK)
    XNaX+Na+ -1.58 -1.58
    XNa+H+fXH+Na+ 1.50 2.10
    AlOH+H+fAlOH2 +  6.15 5.83
    AlOH+OHfAlO + H2O -9.27 -7.02
    SiOH+OHfSiO + H2O -9.06 -8.75
    下载: 导出CSV

    表  2   GMZ-Na基膨润土表面活性位点的分布密度[50]

    Table  2   Distribution density of active sites on surface of GMZ-Na bentonite [50]

    活性位点类型 密度
    蒙脱石层间阳离子交换位点,(X 1.35×10-5 mol/m2, (66.5±7 cmol/kg)
    铝氧八面体边缘羟基位点,(AlOH 9.39×10-7 mol/m2, (4.61 cmol/kg)
    硅氧四面体边缘羟基位点,(SiOH 1.88×10-6 mol/m2, (9.23 cmol/kg)
    下载: 导出CSV
  • [1]

    TAKAYAMA Y, TACHIBANA S, IIZUKA A, et al. Constitutive modeling for compacted bentonite buffer materials as unsaturated and saturated porous media[J]. Soils and Foundations, 2017, 57(1): 80-91. doi: 10.1016/j.sandf.2017.01.006

    [2]

    LU P H, YE W M, HE Y. A constitutive model of compacted bentonite under coupled chemo-hydro-mechanical conditions based on the framework of the BExM[J]. Computers and Geotechnics, 2023, 158: 105360. doi: 10.1016/j.compgeo.2023.105360

    [3]

    BOURG I C, BOURG A C M, SPOSITO G. Modeling diffusion and adsorption in compacted bentonite: a critical review[J]. Journal of Contaminant Hydrology, 2003, 61(1/2/3/4): 293-302.

    [4]

    GUO G L, FALL M. Advances in modelling of hydro-mechanical processes in gas migration within saturated bentonite: a state-of-art review[J]. Engineering Geology, 2021, 287: 106123. doi: 10.1016/j.enggeo.2021.106123

    [5]

    GUIMARãES L D, GENS A, SÁNCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Géotechnique, 2013, 63(3): 221-234. doi: 10.1680/geot.SIP13.P.012

    [6]

    ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1/2): 173-183.

    [7]

    DOMINIJANNI A, MANASSERO M, PUMA S. Coupled chemical-hydraulic-mechanical behaviour of bentonites[J]. Géotechnique, 2013, 63(3): 191-205. doi: 10.1680/geot.SIP13.P.010

    [8]

    BENNETHUM L S, MURAD M A, CUSHMAN J H. Macroscale thermodynamics and the chemical potential for swelling porous media[J]. Transport in Porous Media, 2000, 39(2): 187-225. doi: 10.1023/A:1006661330427

    [9] 徐永福. 膨胀土的水力作用机理及膨胀变形理论[J]. 岩土工程学报, 2020, 42(11): 1979-1987. doi: 10.11779/CJGE202011002

    XU Yongfu. Hydraulic mechanism and swelling deformation theory of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979-1987. (in Chinese) doi: 10.11779/CJGE202011002

    [10]

    RUAN K L, KOMINE H, ITO D, et al. Hydraulic conductivity and X-ray diffraction tests of unsaturated bentonites with a multi-ring and their predictions by pores distributions[J]. Engineering Geology, 2022, 306: 106738. doi: 10.1016/j.enggeo.2022.106738

    [11]

    KOMINE H. Theoretical equations on hydraulic conductivities of bentonite-based buffer and backfill for underground disposal of radioactive wastes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 497-508. doi: 10.1061/(ASCE)1090-0241(2008)134:4(497)

    [12]

    TORSTENFELT B, ALLARD B, KIPATSI H. Measurements of ion mobilities in clay[J]. Soil Science, 1985, 139(6): 512-516. doi: 10.1097/00010694-198506000-00006

    [13]

    MUURINEN A, PEMTILÄ-HILTUNEN P, UUSHEIMO K. Diffusion of chloride and uranium in compacted sodium bentonite[J]. MRS Online Proceedings Library, 1988, 127(1): 743-748.

    [14]

    TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437-450. doi: 10.1139/t03-096

    [15] 陈龙. 复杂化学环境下膨润土膨胀变形研究[D]. 绵阳: 西南科技大学, 2021.

    CHEN Long. Study on the Swelling Deformation of Bentonite in Complex Chemical Environment[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese)

    [16] 张艺东. 碱溶液及离子溶液作用下高庙子膨润土膨胀性及渗透性研究[D]. 绵阳: 西南科技大学, 2017.

    ZHANG Yidong. Study on the Permeability and Expansibility of Alkali Solution and Ion Solution of Gaomiaozi Bentonite[D]. Mianyang: Southwest University of Science and Technology, 2017. (in Chinese)

    [17]

    VEGA F A, COVELO E F, ANDRADE M L. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics[J]. Journal of Colloid and Interface Science, 2006, 298(2): 582-592. doi: 10.1016/j.jcis.2006.01.012

    [18]

    POLCARO A M, MASCIA M, PALMAS S, et al. Competitive sorption of heavy metal ions by soils[J]. Environmental Engineering Science, 2003, 20(6): 607-616. doi: 10.1089/109287503770736122

    [19] 高子瑞, 陈涛, 徐永福. 盐溶液对膨润土膨胀性的影响[J]. 岩土力学, 2018, 39(1): 249-253.

    GAO Zirui, CHEN Tao, XU Yongfu. Effect of salt solution on swelling characteristics of bentonite[J]. Rock and Soil Mechanics, 2018, 39(1): 249-253. (in Chinese)

    [20] 陈永贵, 李昆鹏, 马婧, 等. 化学作用下高庙子膨润土屏障性能演化行为[J]. 工程地质学报, 2022, 30(1): 71-82.

    CHEN Yonggui, LI Kunpeng, MA Jing, et al. Evolution of barrier properties for gaomiaozi bentonite under chemical effects[J]. Journal of Engineering Geology, 2022, 30(1): 71-82. (in Chinese)

    [21] 马婧, 陈永贵, 刘聪, 等. 化学作用下压实膨润土膨胀力响应机制研究进展[J]. 岩土工程学报, 2023, 45(10): 2042-2051. doi: 10.11779/CJGE20220911

    MA Jing, CHEN Yonggui, LIU Cong, et al. Research progress on the swelling pressures mechanisms of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. (in Chinese) doi: 10.11779/CJGE20220911

    [22]

    MITCHELL J K. Fundamentals of Soil Behavior[M]. 2nd ed. New York: Wiley, 1993.

    [23]

    GARCÍA-ROMERO E, LORENZO A, GARCÍA-ⅥCENTE A, et al. On the structural formula of smectites: a review and new data on the influence of exchangeable cations[J]. Journal of Applied Crystallography, 2021, 54: 251-262. doi: 10.1107/S1600576720016040

    [24] 李昆鹏, 陈永贵, 叶为民, 等. 高压实膨润土孔隙结构特征研究进展[J]. 岩土工程学报, 2022, 44(3): 399-408. doi: 10.11779/CJGE202203001

    LI Kunpeng, CHEN Yonggui, YE Weimin, et al. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. (in Chinese) doi: 10.11779/CJGE202203001

    [25]

    SAIYOURI N, HICHER P Y, TESSIER D. Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5(1): 41-60. doi: 10.1002/(SICI)1099-1484(200001)5:1<41::AID-CFM75>3.0.CO;2-N

    [26]

    SAIYOURI N, TESSIER D, HICHER P Y. Experimental study of swelling in unsaturated compacted clays[J]. Clay Minerals, 2004, 39(4): 469-479. doi: 10.1180/0009855043940148

    [27]

    WANG Q. Hydro-mechanical behaviour of bentonite-basedmaterials used for high-level radioactive waste disposal[D]. Paris: Ecole Des Ponts Paris Tech, 2012.

    [28]

    KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46(2): 177-189. doi: 10.1139/T08-120

    [29] 李亚楠, 苏锐, 周志超, 等. 北山新场BS34钻孔岩样在不同温度下的水岩作用[J]. 核化学与放射化学, 2022, 44(3): 386-392.

    LI Yanan, SU Rui, ZHOU Zhichao, et al. Water-rock interaction of granite from borehole BS34 at different temperatures[J]. Journal of Nuclear and Radiochemistry, 2022, 44(3): 386-392. (in Chinese)

    [30]

    LIU L N, CHEN Y G, YE W M, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH–anions[J]. Applied Clay Science, 2018, 161: 334-342. doi: 10.1016/j.clay.2018.04.023

    [31] 梁维云, 韦昌富, 张芹, 等. 膨润土吸湿过程中膨胀力演化及水分分布特征[J]. 岩土工程学报, 2023, 45(2): 283-291. doi: 10.11779/CJGE20211496

    LIANG Weiyun, WEI Changfu, ZHANG Qin, et al. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. (in Chinese) doi: 10.11779/CJGE20211496

    [32] 叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. doi: 10.11779/CJGE202001003

    YE Weimin, LIU Zhangrong, CUI Yujun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) doi: 10.11779/CJGE202001003

    [33]

    PONS C H, ROUSSEAUX F, TCHOUBAR D. Utilisation du rayonnement synchrotron en diffusion Aux petits angles pour l'étude du gonflement des smectites: Ⅰ. Etude du systeme eau-montmorillonite-Na en fonction de la temperature[J]. Clay Minerals, 1981, 16(1): 23-42. doi: 10.1180/claymin.1981.016.1.02

    [34]

    SUZUKI S, PRAYONGPHAN S, ICHIKAWA Y, et al. In situ observations of the swelling of bentonite aggregates in NaCl solution[J]. Applied Clay Science, 2005, 29(2): 89-98. doi: 10.1016/j.clay.2004.11.001

    [35]

    CHEN Y G, DONG X X, ZHANG X D, et al. Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite[J]. Applied Clay Science, 2018, 166: 318-326. doi: 10.1016/j.clay.2018.10.001

    [36]

    SUN D A, ZHANG L, LI J, et al. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution[J]. Applied Clay Science, 2015, 105/106: 207-216.

    [37]

    KARNLAND O, OLSSON S, NILSSON U. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials[R]. Stockholm: Svensk Kärnbränslehantering Ab, 2006.

    [38]

    LEE J O, LIM J G, KANG I M, et al. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 129/130: 20-26.

    [39]

    JADDA K, BAG R. Variation of swelling pressure, consolidation characteristics and hydraulic conductivity of two Indian bentonites due to electrolyte concentration[J]. Engineering Geology, 2020, 272: 105637.

    [40]

    THYAGARAJ T, RAO S M. Osmotic swelling and osmotic consolidation behaviour of compacted expansive clay[J]. Geotechnical and Geological Engineering, 2013, 31(2): 435-445.

    [41]

    DI MAIO C, SANTOLI L, SCHIAVONE P. Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mechanics of Materials, 2004, 36(5/6): 435-451.

    [42] 项国圣, 徐永福, 陈涛, 等. 盐溶液中膨润土膨胀变形的分形模型[J]. 岩土力学, 2017, 38(1): 75-80.

    XIANG Guosheng, XU Yongfu, CHEN Tao, et al. Fractal model for swelling deformation of bentonite in salt solution[J]. Rock and Soil Mechanics, 2017, 38(1): 75-80. (in Chinese)

    [43] 李彩霞, 李俊, 徐猛, 等. 氯盐溶液对钠基膨润土垫层膨胀性能的影响[J]. 土木与环境工程学报(中英文), 2023, 45(1): 97-104.

    LI Caixia, LI Jun, XU Meng, et al. Influence of chlorine salt solution on swelling properties of sodium bentonite cushion[J]. Journal of Civil and Environmental Engineering, 2023, 45(1): 97-104. (in Chinese)

    [44] 李晓月, 徐永福. 盐溶液中膨润土膨胀变形的计算方法[J]. 岩土工程学报, 2019, 41(12): 2353-2359. doi: 10.11779/CJGE201912022

    LI Xiaoyue, XU Yongfu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. (in Chinese) doi: 10.11779/CJGE201912022

    [45]

    TRIPATHY S, BAG R, THOMAS H R. Effect of Stern-layer on the compressibility behaviour of bentonites[J]. Acta Geotechnica, 2014, 9(6): 1097-1109.

    [46]

    ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80.

    [47]

    WU T, WANG Z F, WANG H, et al. Salt effects on Re(Ⅶ) and Se(Ⅳ) diffusion in bentonite[J]. Applied Clay Science, 2017, 141: 104-110.

    [48]

    JIN Q, SU L, MONTAVON G, et al. Surface complexation modeling of U(Ⅵ) adsorption on granite at ambient/elevated temperature: experimental and XPS study[J]. Chemical Geology, 2016, 433: 81-91.

    [49]

    LI S C, WANG X L, HUANG Z Y, et al. Sorption–desorption hysteresis of uranium(Ⅵ) on/from GMZ bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 671-678.

    [50] 刘福强, 叶远虑, 郭宁, 等. Eu(Ⅲ)在Na基高庙子膨润土上的吸附作用: 实验和构模研究[J]. 中国科学: 化学, 2013, 43(2): 242-252.

    LIU Fuqiang, YE Yuanlv, GUO Ning, et al. The adsorption of Eu(Ⅲ) on Gaomiaozi Na-bentonite: experimental and modeling study[J]. Scientia Sinica (Chimica), 2013, 43(2): 242-252. (in Chinese)

    [51]

    LU S S, XU H, WANG M M, et al. Sorption of Eu(Ⅲ) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(2): 889-895.

    [52]

    CHEN Y G, ZHU C M, SUN Y H, et al. Adsorption of La(Ⅲ) onto GMZ bentonite: effect of contact time, bentonite content, pH value and ionic strength[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(3): 1339-1347.

    [53]

    SUN Z, CHEN Y G, MU X, et al. Graphene oxide-modified organic Gaomiaozi bentonite for Yb(Ⅲ) adsorption from aqueous solutions[J]. Materials Chemistry and Physics, 2021, 274: 125176.

    [54]

    LI S C, WANG X L, HUANG Z Y, et al. Sorption and desorption of uranium(Ⅵ) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(3): 877-886.

    [55]

    DONG Y H, LIU Z J, LI Y Y. Effect of pH, ionic strength, foreign ions and humic substances on Th(Ⅳ) sorption to GMZ bentonite studied by batch experiments[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(1): 257-265.

    [56]

    BRADBURY M H, BAEYENS B. Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation[J]. Geochimica et Cosmochimica Acta, 2002, 66(13): 2325-2334.

    [57]

    COVELO E F, VEGA F A, ANDRADE M L. Competitive sorption and desorption of heavy metals by individual soil components[J]. Journal of Hazardous Materials, 2007, 140(1/2): 308-315.

    [58]

    GOMES P C, FONTES M P F, DA SILVA A G, et al. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils[J]. Soil Science Society of America Journal, 2001, 65(4): 1115-1121.

    [59]

    LIU C, XU Q W, XU Y W, et al. Characterization of adsorption behaviors of U(Ⅵ) on bentonite colloids: batch experiments, kinetic evaluation and thermodynamic analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(1): 597-607.

    [60] 杜作勇, 王彦惠, 李东瑞, 等. 膨润土对U(Ⅵ)的吸附机理研究[J]. 核技术, 2019, 42(2): 22-29.

    DU Zuoyong, WANG Yanhui, LI Dongrui, et al. Adsorption mechanism of U(Ⅵ) by bentonite[J]. Nuclear Techniques, 2019, 42(2): 22-29. (in Chinese)

图(21)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-11-30

目录

/

返回文章
返回