Experimental study on mechanical properties of sandy clayey purple soil cemented by a new EICP grouting method
-
摘要: 紫色土广泛分布于中国三峡库区,受极端环境与气候影响,土体结构和力学性能退化严重,可采用生物矿化技术(MICP/EICP)进行加固处理,然而紫色土呈砂质黏性,渗透性弱,传统方法的固化效果有限,为此,引入一种单相低pH负压注浆的新型EICP技术。通过表面硬度、无侧限抗压强度、碳酸钙含量、SEM和XRD测试对比分析预拌合、单相低pH注浆、双相低pH负压注浆和单相低pH负压注浆法的固化效果,结果表明:50 g/L脲酶浓度和1.2 mol/L胶结液浓度为EICP注浆固化紫色土的最适浓度;单相低pH负压注浆法可使表面硬度增加9.1%,对无侧限抗压强度和刚度的提升达到84.44%,144.37%,且能够明显提高碳酸钙含量和胶结均匀性,在4种固化方法中效果最优。结果表明新型EICP单相低pH负压注浆法对砂质黏性紫色土力学性能的改善是有效的,在细粒土加固方面具有潜在应用价值。
-
关键词:
- 脲酶诱导碳酸钙沉积(EICP) /
- 脲酶浓度 /
- 固化方法 /
- 无侧限抗压强度 /
- 胶结均匀性
Abstract: The purple soil is widely distributed in the Three Gorges Reservoir area of China. Influenced by the extreme environmental and climatic conditions, its structure and mechanical properties deteriorate significantly. To address this issue, the use of the biomineralization technology (MICP and EICP) for reinforcement is considered. However, due to its sandy-clay nature and weak permeability, the conventional methods have limited effectiveness in cementation. Thus, a new EICP technology for one-phase-low-pH negative pressure grouting is introduced. Through various means such as surface hardness, unconfined compressive strength (UCS), calcium carbonate content, SEM and XRD tests, the solidification effects of pre-mixing, one-phase-low-pH grouting, two-phase-low-pH negative pressure grouting and one-phase-low-pH negative pressure grouting methods are compared and analyzed. The results show that the optimal concentrations for EICP grouting to solidify the purple soil are 50 g/L urease concentration and 1.2 mol/L cementitious solution concentration. The one-phase-low-pH negative pressure grouting method increases the surface hardness by 9.1%, achieving enhancements of 84.44% and 144.37% in the UCS and stiffness, respectively. The calcium carbonate content after one round of one-phase-low-pH negative pressure grouting is 3.09%, which is the highest among the 4 solidification methods. The UCS increases exponentially with the increase in the calcium carbonate content. The SEM analysis shows that the calcium carbonate crystals obtained by the one-phase-low-pH negative pressure grouting method have the most uniform distribution, with a substantial amount of contact cementation. The crystal types are calcite and vaterite. The results demonstrate that the new EICP technology for the one-phase-low-pH negative pressure grouting method effectively improves the mechanical properties of the sandy clayey purple soil, showing potential application value in the reinforcement of fine-grained soil. -
-
表 1 CCD响应面试验结果
Table 1 Results of CCD response surface tests
编号 因素水平 结果 脲酶浓度Cus/(g·L-1) 胶结液浓度Ccs/(mol·L-1) 产钙量/g 产钙率/% 1 50 (-1) 0.4 (-1) 0.23 58 2 150 (1) 0.4 (-1) 0.32 80 3 50 (-1) 1.2 (1) 0.91 76 4 150 (1) 1.2 (1) 0.39 33 5 29.3 (-1.41) 0.8 (0) 0.51 64 6 170.7 (1.41) 0.8 (0) 0.45 57 7 100 (0) 0.2 (-1.41) 0.14 72 8 100 (0) 1.4 (1.41) 0.67 48 9 100 (0) 0.8 (0) 0.39 48 10 100 (0) 0.8 (0) 0.35 44 11 100 (0) 0.8 (0) 0.38 48 12 100 (0) 0.8 (0) 0.40 50 13 100 (0) 0.8 (0) 0.40 50 注:括号中的数值为因素编码值。 表 2 碳酸钙产率与处理液浓度回归模型的方差分析
Table 2 Variance analysis of regression model for calcium carbonate production ratio and concentration of treatment solution
项 平方和 自由度 均方差 F P 模型 2191.05 5 438.21 65.33 < 0.0001** Cus 119.35 1 119.35 17.79 0.0039** Ccs 495.20 1 495.20 73.82 < 0.0001** CusCcs 1056.25 1 1056.25 157.47 < 0.0001** 305.33 1 305.33 45.52 0.0002** 282.72 1 282.72 42.15 0.0003** 失拟项 22.95 3 7.65 1.28 0.3961 注:*为显著,P < 0.05;**为极显著,P < 0.01。 表 3 EICP固化方案
Table 3 EICP cementation solutions
试验编号 固化方法 固化液浓度 处理流程 负压灌注 处理轮次 M0 对照组 无 未固化 × 0 M1 预拌合 50 g/L脲酶液+1.2 mol/L胶结液 28.26 mL脲酶液与28.26 mL胶结液拌合制样 × 1 M2 单相低pH注浆 50 g/L脲酶液+1.2 mol/L胶结液 60 mL脲酶液与60 mL胶结液混合灌注 × 1 M3 双相低pH负压注浆 50 g/L脲酶液+1.2 mol/L胶结液 灌注60 mL脲酶液—静置2 h—灌注60 mL胶结液 √ 1 M4 单相低pH负压注浆 50 g/L脲酶液+1.2 mol/L胶结液 60 mL脲酶液与60 mL胶结液混合灌注 √ 1 -
[1] CUI M J, LAI H J, WU S F, et al. Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation[J]. Géotechnique, 2024, 74(1): 18-26. doi: 10.1680/jgeot.21.00131
[2] VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. doi: 10.1061/(ASCE)GT.1943-5606.0000382
[3] DEJONG J, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
[4] LIU B, ZHU C, TANG C S, et al. Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP)[J]. Engineering Geology, 2020, 264: 105389. doi: 10.1016/j.enggeo.2019.105389
[5] MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation[J]. Géotechnique, 2013, 63(4): 302-312. doi: 10.1680/geot.SIP13.P.019
[6] JIANG N J, SOGA K. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures[J]. Géotechnique, 2017, 67(1): 42-55. doi: 10.1680/jgeot.15.P.182
[7] 邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11): 133-139. doi: 10.11975/j.issn.1002-6819.2017.11.017 SHAO Guanghui, FENG Jianting, ZHAO Zhifeng, et al. Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 133-139. (in Chinese) doi: 10.11975/j.issn.1002-6819.2017.11.017
[8] WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
[9] ZHANG Q, YE W M, LIU Z R, et al. Influence of injection methods on calcareous sand cementation by EICP technique[J]. Construction and Building Materials, 2023, 363: 129724. doi: 10.1016/j.conbuildmat.2022.129724
[10] 张茜, 叶为民, 刘樟荣, 等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357. ZHANG Qian, YE Weimin, LIU Zhangrong, et al. Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43(2): 345-357. (in Chinese)
[11] RAN D, KAWASAKI S. Effective use of plant-derived urease in the field of geoenvironmental/geotechnical engineering[J]. Journal of Civil & Environmental Engineering, 2016, 6(1): 1000207.
[12] WEN K J, LI Y, AMINI F, et al. Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate[J]. Acta Geotechnica, 2020, 15(1): 17-27. doi: 10.1007/s11440-019-00899-3
[13] HOANG T, ALLEMAN J, CETIN B, et al. Sand and silty-sand soil stabilization using bacterial enzyme–induced calcite precipitation (BEICP)[J]. Canadian Geotechnical Journal, 2019, 56(6): 808-822. doi: 10.1139/cgj-2018-0191
[14] GAO Y F, HE J, TANG X Y, et al. Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil[J]. Soils and Foundations, 2019, 59(5): 1631-1637. doi: 10.1016/j.sandf.2019.03.014
[15] TOBLER D J, MACLACHLAN E, PHOENIX V R. Microbially mediated plugging of porous media and the impact of differing injection strategies[J]. Ecological Engineering, 2012, 42: 270-278. doi: 10.1016/j.ecoleng.2012.02.027
[16] CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2019, 14(3): 615-626. doi: 10.1007/s11440-018-0738-2
[17] CUI M J, LAI H J, HOANG T, et al. One-phase-low-pH enzymeinduced carbonate precipitation (EICP) method for soil improvement[J]. Acta Geotechnica, 2021, 16(2): 481-489. doi: 10.1007/s11440-020-01043-2
[18] CUI M J, LAI H J, HOANG T, et al. Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement[J]. Acta Geotechnica, 2022, 17(7): 2931-2941. doi: 10.1007/s11440-021-01384-6
[19] BAO Y H, GAO P, HE X B. The water-level fluctuation zone of Three Gorges Reservoir—a unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150: 14-24. doi: 10.1016/j.earscirev.2015.07.005
[20] 梁广川, 汪时机, 李贤, 等. 砂质黏性紫色土渗透特性试验研究[J]. 岩土工程学报, 2018, 40(增刊2): 220-224. doi: 10.11779/CJGE2018S2044 LIANG Guangchuan, WANG Shiji, LI Xian, et al. Experimental study on permeability characteristics of sandy cohesive purple soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 220-224. (in Chinese) doi: 10.11779/CJGE2018S2044
[21] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505
[22] STRÓŻYK J, TANKIEWICZ M. The elastic undrained modulus Eu50 for stiff consolidated clays related to the concept of stress history and normalized soil properties[J]. Studia Geotechnicaet Mechanica, 2016, 38(3): 67-72. doi: 10.1515/sgem-2016-0025
[23] 谌文武, 张起勇, 刘宏伟, 等. 糯米浆温度对糯米灰浆加固遗址土的影响[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4244-4250. CHEN Wenwu, ZHANG Qiyong, LIU Hongwei, et al. Effect of temperature of glutinous rice slurry on strengthening site soil with glutinous rice slurry[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4244-4250. (in Chinese)
[24] 李鑫浩, 曹文华, 牛勇, 等. 黄泛平原区风沙土物理结皮硬度和厚度特征及其影响因素[J]. 水土保持通报, 2022, 42(1): 63-68, 76. LI Xinhao, CAO Wenhua, NIU Yong, et al. Characteristics and influencing factors of hardness and thickness of aeolian sandy soil crust at sandy area of Yellow River floodplain[J]. Bulletin of Soil and Water Conservation, 2022, 42(1): 63-68, 76. (in Chinese)
[25] ARPAJIRAKUL S, PUNGRASMI W, LIKITLERSUANG S. Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement[J]. Construction and Building Materials, 2021, 282: 122722. doi: 10.1016/j.conbuildmat.2021.122722
[26] BU C M, WEN K J, LIU S H, et al. Development of bio-cemented constructional materials through microbial induced calcite precipitation[J]. Materials and Structures, 2018, 51(1): 30. doi: 10.1617/s11527-018-1157-4
[27] 沈泰宇, 汪时机, 薛乐, 等. 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124. SHEN Taiyu, WANG Shiji, XUE Le, et al. An experimental study of sandy clayey purple soil enhanced through microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(8): 3115-3124. (in Chinese)
[28] 邵光辉, 尤婷, 赵志峰, 等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 129-135. SHAO Guanghui, YOU Ting, ZHAO Zhifeng, et al. Microstructure and mechanism of microbial cementation silt treated by bio-grouting[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 129-135. (in Chinese)
[29] 彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. doi: 10.11779/CJGE201904017 PENG Jie, WEN Zhili, LIU Zhiming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) doi: 10.11779/CJGE201904017
[30] SOON N W, LEE lee min, KHUN T C, et al. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 04014006. doi: 10.1061/(ASCE)GT.1943-5606.0001089
[31] LEE M L, NG W S, TANAKA Y. Stress-deformation and compressibility responses of bio-mediated residual soils[J]. Ecological Engineering, 2013, 60: 142-149. doi: 10.1016/j.ecoleng.2013.07.034
[32] LIN H, SULEIMAN M T, BROWN D G, et al. Mechanical behavior of sands treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 04015066. doi: 10.1061/(ASCE)GT.1943-5606.0001383
[33] LI M D, YANG Y J, ZHANG S A, et al. Effects of sorbitol and sucrose on soybean-urease induced calcium carbonate precipitate[J]. Biogeotechnics, 2023, 1: 100052. doi: 10.1016/j.bgtech.2023.100052
-
期刊类型引用(10)
1. 张翔,陈莹,雷真,范翔,赵彦淇. 高温冷热循环对花岗岩物理力学性能的影响. 科学技术与工程. 2025(02): 737-752 . 百度学术
2. 翟明磊,李振华,杜锋,白海波,王文强. 考虑浆液渗流–岩体变形耦合作用的裂隙注浆模拟试验系统研制与应用. 岩石力学与工程学报. 2024(04): 878-889 . 百度学术
3. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 . 百度学术
4. 崔溦,裴介渲,江志安. 动水作用下岩体裂隙中颗粒运动规律的试验研究. 岩土力学. 2024(10): 2870-2878 . 百度学术
5. 罗涛,黄正濛,李兵磊,刘谦,刘辉,陈志强. 含二维和三维预制裂隙的脆性岩石试样的破坏特征数值验证. 南昌大学学报(工科版). 2024(03): 345-350 . 百度学术
6. 孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 . 百度学术
7. 张乐 ,杨志兵 ,李东奇 ,陈益峰 . 浆液在透明复制裂隙中驱替行为的可视化试验研究. 岩土力学. 2023(06): 1708-1718 . 百度学术
8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
9. 吕鑫,杨科,方珏静,段敏克,王于,张寨男. 采空区破碎岩体负压注浆加固试验研究与机制分析. 岩石力学与工程学报. 2023(S2): 4174-4188 . 百度学术
10. 李奔,刘汉乐,李培华,程锡治,王清,黄仕龙,刘新宇,金明哲. 碳酸盐岩石裂隙中DNAPL污染物迁移过程的电阻率成像. 地球物理学进展. 2023(06): 2704-2713 . 百度学术
其他类型引用(8)
-
其他相关附件