• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

单向与多层互剪搅拌桩性能模型试验对比研究

葛春巍, 刘钟, 兰伟, 杨宁晔, 文磊, 周洁

葛春巍, 刘钟, 兰伟, 杨宁晔, 文磊, 周洁. 单向与多层互剪搅拌桩性能模型试验对比研究[J]. 岩土工程学报, 2024, 46(11): 2420-2428. DOI: 10.11779/CJGE20230791
引用本文: 葛春巍, 刘钟, 兰伟, 杨宁晔, 文磊, 周洁. 单向与多层互剪搅拌桩性能模型试验对比研究[J]. 岩土工程学报, 2024, 46(11): 2420-2428. DOI: 10.11779/CJGE20230791
GE Chunwei, LIU Zhong, LAN Wei, YANG Ningye, WEN Lei, ZHOU Jie. Model tests on performances of DSM and CS-DSM piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2420-2428. DOI: 10.11779/CJGE20230791
Citation: GE Chunwei, LIU Zhong, LAN Wei, YANG Ningye, WEN Lei, ZHOU Jie. Model tests on performances of DSM and CS-DSM piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2420-2428. DOI: 10.11779/CJGE20230791

单向与多层互剪搅拌桩性能模型试验对比研究  English Version

基金项目: 

宁波市高新区重大科技专项 2023CX050004

详细信息
    作者简介:

    葛春巍(1988—),男,博士,工程师,主要从事地基处理装备研发及工艺工法研究。Email: gexxx063@alum.mit.edu

    通讯作者:

    刘钟, E-mail: zzliu8@163.com

  • 中图分类号: TU443

Model tests on performances of DSM and CS-DSM piles

  • 摘要: 利用自研单向与多层互剪搅拌桩模型钻机,对传统DSM桩与新型CS-DSM桩的工艺因素及成桩质量进行了模型试验对比研究,探索了水泥掺量和单位桩长搅拌次数T对两类搅拌桩成桩均匀性与桩身强度的影响。试验结果证实CS-DSM桩的表观均匀性和桩身连续性明显好于DSM桩,在T值相同条件下,两者平均桩身强度比Rs为1.41~6.4,且Rs随着搅拌次数T增加而呈指数趋势降低,24组模型试验结果还揭示出DSM桩与CS-DSM桩在UCS-T之间的本质联系。提出的DSM桩与CS-DSM桩的T值和UCS值的计算方法,可以指导搅拌桩施工参数合理选取以实现桩身设计强度目标。通过DSM工法与CS-DSM工法的试验对比研究获得的两类桩的桩身质量差异性结果,能够为高质量的CS-DSM桩工艺控制原则和质量保障体系提供试验依据。
    Abstract: Using the small-scale model rig, a comparative experimental study is conducted to investigate the process control and quality control in the deep soil mixing (DSM) method and contra-rotational shear deep soil mixing (CS-DSM) method. The research emphasis is placed on the effects of cement content, blade rotation number T on the uniformity and unconfined compression strength (UCS) of mixing piles. A notably improved uniformity and continuity of the CS-DSM piles over the DSM piles is confirmed by the test results. The strength ratio Rs ranges from 1.41 to 6.4, and it shows an exponential decrease with the increasing T. Furthermore, the results from 24 model piles provide insights into the fundamental relationship and distinctions between UCS and T. On this basis, the construction parameters can be optimized to ensure the target design strength for both types of piles. The model test results clearly demonstrate the differences in the construction quality between the DSM method and the CS-DSM method. The technical basis established in this study serves as a cornerstone for the process control and quality assurance in installing high-quality CS-DSM piles.
  • 图  1   DSM桩、DDM桩、CS-DSM桩的施工钻头对比

    Figure  1.   Comparison between three different drill bits

    图  2   SXJ-110-D型多层互剪搅拌桩施工钻机装备

    Figure  2.   CS-DSM drilling rig model No. SXJ-110-D

    图  3   智能控制ACS系统框图

    Figure  3.   Layout of autonomous control system

    图  4   模型箱、模型钻机与ACS系统

    Figure  4.   Model case, drilling rig and ACS

    图  5   模型钻机动力头

    Figure  5.   Rotary power heads for drilling rig

    图  6   搅拌桩钻具

    Figure  6.   Illustration of drill bits for DSM and CS-DSM piles

    图  7   模型桩位布置图

    Figure  7.   Position of piles in model foundation

    图  8   色砂试验的表观均匀性对比照片(T = 400)

    Figure  8.   Results of uniformity tests for DSM and CS-DSM piles

    图  9   两类搅拌桩的试块均匀性对比照片(T = 640~650)

    Figure  9.   Pictures of soilcrete cubes for DSM and CS-DSM piles

    图  10   水泥掺量与桩身强度的关系曲线

    Figure  10.   Relationship between UCS and cement content

    图  11   DSM桩的桩身强度与搅拌次数的关系曲线

    Figure  11.   Relationship between UCS and T for DSM piles

    图  12   CS-DSM桩的桩身强度与搅拌次数的相关关系

    Figure  12.   Relationship between UCS and T for CS-DSM piles

    图  13   DSM桩与CS-DSM桩的桩身强度对比

    Figure  13.   Comparison of UCS between DSM and CS-DSM piles

    图  14   强度比Rs与单位桩长搅拌次数T的相关性

    Figure  14.   Strength ratios between DSM and CS-DSM piles

    图  15   两类桩身强度变异系数与搅拌次数的相关关系

    Figure  15.   Relationship between COV and T

    表  1   模拟地基的物理力学指标

    Table  1   Physico-mechanical parameters of model soil

    密度/(g·cm-3) 含水率/% 液限/% 塑限/% 黏聚力/kPa 内摩擦角/(°) 塑性指数
    1.84 30 34.1 20.5 8.4 13.7 13.6
    下载: 导出CSV

    表  2   桩身强度与水泥掺量关系的试验方案

    Table  2   Test plans for studying cement content and UCS

    桩号 水泥掺量/% 阶段 转速/ rpm 升降速度/(m·min-1) 浆液流量/(L·min-1) 搅拌次数/(rev·m-1)
    内杆 外杆
    1 8 下/上 单向 24 0.28/0.28 0.33/ — 686
    2 13 下/上 单向 24 0.28/0.28 0.54/ — 686
    3 18 下/上 单向 24 0.28/0.28 0.75/ — 686
    CS1 8 下/上 10 6 0.28/0.28 0.33/ — 686
    CS2 13 下/上 10 6 0.28/0.28 0.54/ — 686
    CS3 18 下/上 10 6 0.28/0.28 0.75/ — 686
    注:平均养护温度为17℃。
    下载: 导出CSV

    表  3   搅拌次数对比试验方案:DSM桩试验参数

    Table  3   Test plans for studying blade rotation number for DSM piles

    桩号 阶段 转速/ rpm 升降速度/(m·min-1 浆液流量/(L·min-1 搅拌次数/(rev·m-1
    下钻 提钻
    4 下/上 9 14 0.25/0.36 0.48/ — 300
    5 下/上 11 20 0.25/0.36 0.48/ — 398
    6 下/上 13 22 0.25/0.36 0.48/ — 452
    7 下/上 15 23 0.25/0.36 0.48/ — 496
    8 下/上 17 25 0.25/0.36 0.48/ — 550
    9 下/上 18 28 0.25/0.36 0.48/ — 599
    10 下/上 21 28 0.25/0.36 0.48/ — 647
    11 下/上 22 31 0.25/0.36 0.48/ — 696
    12 下/上 22 32 0.25/0.32 0.48/ — 752
    13 下/上 23 33 0.25/0.30 0.48/ — 808
    14 下/上 25 33 0.25/0.30 0.48/ — 853
    15 下/上 25 35 0.25/0.28 0.48/ — 900
    16 下/上 25 36 0.25/0.24 0.48/ — 1000
    注:平均养护温度为32 ℃。
    下载: 导出CSV

    表  4   搅拌次数对比试验方案:CS-DSM桩试验参数

    Table  4   Test plans for studying blade rotation number for CS-DSM piles

    桩号 阶段 转速/ rpm 升降速度/(m·min-1) 浆液流量/(L·min-1) 搅拌次数/(rev·m-1)
    内杆 外杆
    CS4 下/上 6 4 0.28/0.28 0.54/ — 429
    CS5 下/上 9 6 0.28/0.28 0.54/ — 643
    CS6 下/上 11 7 0.28/0.28 0.54/ — 771
    CS7 下/上 13 9 0.28/0.28 0.54/ — 943
    CS8 下/上 19 12 0.28/0.28 0.54/ — 1329
    注:平均养护温度为32℃。
    下载: 导出CSV
  • [1]

    COLLE E R. Mixed in place pile: USA, US3270511[P]. 1966-09-06.

    [2]

    PORBAHA A. State of the art in deep mixing technology: part Ⅰ Basic concepts and overview[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1998, 2(2): 81-92. doi: 10.1680/gi.1998.020204

    [3]

    DENIES N, HUYBRECHTS N. Deep Mixing Method[M]// Ground Improvement Case Histories. Amsterdam: Elsevier, 2015: 311-350.

    [4]

    FILZ G, BRUCE D. Innovation and collaboration in deep mixing[C]// Grouting 2017. Honolulu, 2017: 336-353.

    [5]

    PORBAHA A, SHIBUYA S, KISHIDA T. State of the art in deep mixing technology. Part Ⅲ: geomaterial characterization[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2000, 4(3): 91-110. doi: 10.1680/grim.2000.4.3.91

    [6]

    KITAZUME M. Quality Control and Assurance of the Deep Mixing Method[M]. London: CRC Press, 2021.

    [7]

    O'ROURKE T D, MCGINN A J. Case history of deep mixing soil stabilization for Boston central artery[C]//Geotechnical Engineering for Transportation Projects. Los Angeles, 2004: 77-136.

    [8]

    SEIJI M, SHUBUYA S, TETSUJI M, et al. Soil improvement device: Japan, JP08-199556[P]. 1996-08-06.

    [9] 木付拓磨, 澤口宏, 今井正, など. 大口径大深度深層混合処理工法の適用における リアルタイム管理システムの導入[J]. 日本材料科学学会雑誌, 2018, 67(1): 93-98.

    KIZUKI T, SAWAGUCHI H, IMAI T, et al. An introduction of real-time management system for applying deep-mixing method with large diameter and improvement depth (DCS method)[J]. Journal of the Society of Materials Science, Japan, 2018, 67(1): 93-98. (in Japanese)

    [10] 鈴木孝, 齋藤邦夫, 原満生, など. 複合相対攪拌翼を用いた深層混合処理工法の改良原理と適用事例[J]. 日本材料科学学会雑誌, 2010, 59(1): 32-37.

    SUZUKI K, SAITOH K, HARA M, et al. Mixing mechanism and case study of deep stabilization method using contra-rotational mixing head[J]. Journal of the Society of Materials Science, 2010, 59(1): 32-37. (in Japanese)

    [11]

    MORI K, UKAJI N, MIYAKAWA M. Invited Lecture: recent trends in the development of deep mixing methods in Japan[C]// Geotechnics for Sustainable Infrastructure Development. Singapore, 2020: 541-554.

    [12] 島野嵐. 大口径相対攪拌工法の概要と施工事例: KS-S·MIX工法(特集基礎工, 地盤改良)建設機械施工一般社団法人[J]. 日本建設機械施工協会誌, 2017, 69(7): 59-63.

    SHIMANO A. Case study: large diameter contra-rotational soil mixing pils using KS-S MIX method[J]. JCMA, 2017, 69(7): 59-63. (in Japanese)

    [13] 刘松玉, 宫能和, 冯锦林, 等. 双向水泥土搅拌桩机: CN1632232A[P]. 2005-06-29.

    LIU Songyu, GONG Nenghe, FEN Jinling, et al. Bi-directional cement soil mixing pile machine: CN1632232A[P]. 2005-06-29. (in Chinese)

    [14] 刘松玉, 易耀林, 朱志铎. 双向搅拌桩加固高速公路软土地基现场对比试验研究[J]. 岩石力学与工程学报, 2008, 27(11): 2272-2280. doi: 10.3321/j.issn:1000-6915.2008.11.014

    LIU Songyu, YI Yaolin, ZHU Zhiduo. Comparison tests on field bidirectional mixing column for soft ground improvement in expressway[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2272-2280. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.11.014

    [15] 刘松玉. 新型搅拌桩复合地基理论与技术[M]. 南京: 东南大学出版社, 2014.

    LIU Songyu. Innovative Deep Mixing Method-Theory and Technology[M]. Nanjing: Southeast University Press, 2014. (in Chinese)

    [16] 刘钟, 陈天雄, 杨宁晔, 等. 一种具有双向旋搅机构的智能钻机装备: CN218405399U[P]. 2023-01-31.

    LIU Zhong, CHEN Tianxiong, YANG Ningye, et al. Intelligent drilling machine equipment with bidirectional rotary stirring mechanism: CN218405399U[P]. 2023-01-31. (in Chinese)

    [17] 刘钟, 李国民, 王占丑, 等. 一种搅拌桩机用同心三管三通道钻杆结构和组合注浆钻具: CN114319334A[P]. 2022-04-12.

    LIU Zhong, LI Guomin, WANG Zhanchou, et al. Concentric three-pipe three-channel drill rod structure for mixing pile machine and combined grouting drilling tool: CN114319334A[P]. 2022-04-12. (in Chinese)

    [18] 陈湘生, 洪成雨, 苏栋. 智能岩土工程初探[J]. 岩土工程学报, 2022, 44(12): 2151-2159. doi: 10.11779/CJGE202212001

    CHEN Xiangsheng, HONG Chengyu, SU Dong. Intelligent geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2151-2159. (in Chinese) doi: 10.11779/CJGE202212001

    [19]

    ANTSAKLIS P J, PASSINO K M, WANG S J. An introduction to autonomous control systems[J]. IEEE Control Systems Magazine, 1991, 11(4): 5-13. doi: 10.1109/37.88585

    [20]

    NAKAO K, INAZUMI S, TAKAUE T, et al. Visual evaluation of relative deep mixing method type of ground-improvement method[J]. Results in Engineering, 2021, 10: 100233. doi: 10.1016/j.rineng.2021.100233

    [21]

    NAKAO K, INAZUMI S, TAKAUE T, et al. Evaluation of discharging surplus soils for relative stirred deep mixing methods by MPS-CAE analysis[J]. Sustainability, 2021, 14(1): 58. doi: 10.3390/su14010058

    [22]

    ANDROMALOS K B, BAHNER E W. The application of various deep mixing methods for excavation support systems[C]// Grouting and Ground Treatment, New Orleans, 2003: 515-526.

    [23]

    SHEN S L, MIURA N, KOGA H. Interaction mechanism between deep mixing column and surrounding clay during installation[J]. Canadian Geotechnical Journal, 2003, 40(2): 293-307.

    [24] 深层搅拌法地基处理技术规范: DL/T5425—2018[S]. 北京: 中国电力出版社, 2018.

    Technical Specification for Deep Mixing Ground Treatment: DL/T5425—2018[S]. Beijing: China Electric Power Press, 2018. (in Chinese)

    [25] 水泥土配合比设计规程: JGJ/T 233—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Specification for Mix Proportion Design of Cement Soil: JGJ/T 233—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)

    [26]

    NAVIN M P, FILZ G M. Statistical analysis of strength data from ground improved with DMM columns[C]//Deep Mixing '05: Proc Int Conf on Deep Mixing Best Practice and Recent Advances, Stockholm, 2005.

  • 期刊类型引用(11)

    1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
    2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
    3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
    4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
    5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
    6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
    7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
    8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
    9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
    10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
    11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术

    其他类型引用(8)

图(15)  /  表(4)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  48
  • PDF下载量:  104
  • 被引次数: 19
出版历程
  • 收稿日期:  2023-08-15
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-10-31

目录

    /

    返回文章
    返回