Model tests on performances of DSM and CS-DSM piles
-
摘要: 利用自研单向与多层互剪搅拌桩模型钻机,对传统DSM桩与新型CS-DSM桩的工艺因素及成桩质量进行了模型试验对比研究,探索了水泥掺量和单位桩长搅拌次数T对两类搅拌桩成桩均匀性与桩身强度的影响。试验结果证实CS-DSM桩的表观均匀性和桩身连续性明显好于DSM桩,在T值相同条件下,两者平均桩身强度比Rs为1.41~6.4,且Rs随着搅拌次数T增加而呈指数趋势降低,24组模型试验结果还揭示出DSM桩与CS-DSM桩在UCS-T之间的本质联系。提出的DSM桩与CS-DSM桩的T值和UCS值的计算方法,可以指导搅拌桩施工参数合理选取以实现桩身设计强度目标。通过DSM工法与CS-DSM工法的试验对比研究获得的两类桩的桩身质量差异性结果,能够为高质量的CS-DSM桩工艺控制原则和质量保障体系提供试验依据。
-
关键词:
- 搅拌桩 /
- 多层互剪搅拌桩 /
- CS-DSM工法 /
- 搅拌次数 /
- 桩身均匀性和抗压强度
Abstract: Using the small-scale model rig, a comparative experimental study is conducted to investigate the process control and quality control in the deep soil mixing (DSM) method and contra-rotational shear deep soil mixing (CS-DSM) method. The research emphasis is placed on the effects of cement content, blade rotation number T on the uniformity and unconfined compression strength (UCS) of mixing piles. A notably improved uniformity and continuity of the CS-DSM piles over the DSM piles is confirmed by the test results. The strength ratio Rs ranges from 1.41 to 6.4, and it shows an exponential decrease with the increasing T. Furthermore, the results from 24 model piles provide insights into the fundamental relationship and distinctions between UCS and T. On this basis, the construction parameters can be optimized to ensure the target design strength for both types of piles. The model test results clearly demonstrate the differences in the construction quality between the DSM method and the CS-DSM method. The technical basis established in this study serves as a cornerstone for the process control and quality assurance in installing high-quality CS-DSM piles.-
Keywords:
- DSM pile /
- CS-DSM pile /
- CS-DSM method /
- blade rotation number /
- pile uniformity and strength
-
-
表 1 模拟地基的物理力学指标
Table 1 Physico-mechanical parameters of model soil
密度/(g·cm-3) 含水率/% 液限/% 塑限/% 黏聚力/kPa 内摩擦角/(°) 塑性指数 1.84 30 34.1 20.5 8.4 13.7 13.6 表 2 桩身强度与水泥掺量关系的试验方案
Table 2 Test plans for studying cement content and UCS
桩号 水泥掺量/% 阶段 转速/ rpm 升降速度/(m·min-1) 浆液流量/(L·min-1) 搅拌次数/(rev·m-1) 内杆 外杆 1 8 下/上 单向 24 0.28/0.28 0.33/ — 686 2 13 下/上 单向 24 0.28/0.28 0.54/ — 686 3 18 下/上 单向 24 0.28/0.28 0.75/ — 686 CS1 8 下/上 10 6 0.28/0.28 0.33/ — 686 CS2 13 下/上 10 6 0.28/0.28 0.54/ — 686 CS3 18 下/上 10 6 0.28/0.28 0.75/ — 686 注:平均养护温度为17℃。 表 3 搅拌次数对比试验方案:DSM桩试验参数
Table 3 Test plans for studying blade rotation number for DSM piles
桩号 阶段 转速/ rpm 升降速度/(m·min-1) 浆液流量/(L·min-1) 搅拌次数/(rev·m-1) 下钻 提钻 4 下/上 9 14 0.25/0.36 0.48/ — 300 5 下/上 11 20 0.25/0.36 0.48/ — 398 6 下/上 13 22 0.25/0.36 0.48/ — 452 7 下/上 15 23 0.25/0.36 0.48/ — 496 8 下/上 17 25 0.25/0.36 0.48/ — 550 9 下/上 18 28 0.25/0.36 0.48/ — 599 10 下/上 21 28 0.25/0.36 0.48/ — 647 11 下/上 22 31 0.25/0.36 0.48/ — 696 12 下/上 22 32 0.25/0.32 0.48/ — 752 13 下/上 23 33 0.25/0.30 0.48/ — 808 14 下/上 25 33 0.25/0.30 0.48/ — 853 15 下/上 25 35 0.25/0.28 0.48/ — 900 16 下/上 25 36 0.25/0.24 0.48/ — 1000 注:平均养护温度为32 ℃。 表 4 搅拌次数对比试验方案:CS-DSM桩试验参数
Table 4 Test plans for studying blade rotation number for CS-DSM piles
桩号 阶段 转速/ rpm 升降速度/(m·min-1) 浆液流量/(L·min-1) 搅拌次数/(rev·m-1) 内杆 外杆 CS4 下/上 6 4 0.28/0.28 0.54/ — 429 CS5 下/上 9 6 0.28/0.28 0.54/ — 643 CS6 下/上 11 7 0.28/0.28 0.54/ — 771 CS7 下/上 13 9 0.28/0.28 0.54/ — 943 CS8 下/上 19 12 0.28/0.28 0.54/ — 1329 注:平均养护温度为32℃。 -
[1] COLLE E R. Mixed in place pile: USA, US3270511[P]. 1966-09-06.
[2] PORBAHA A. State of the art in deep mixing technology: part Ⅰ Basic concepts and overview[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1998, 2(2): 81-92. doi: 10.1680/gi.1998.020204
[3] DENIES N, HUYBRECHTS N. Deep Mixing Method[M]// Ground Improvement Case Histories. Amsterdam: Elsevier, 2015: 311-350.
[4] FILZ G, BRUCE D. Innovation and collaboration in deep mixing[C]// Grouting 2017. Honolulu, 2017: 336-353.
[5] PORBAHA A, SHIBUYA S, KISHIDA T. State of the art in deep mixing technology. Part Ⅲ: geomaterial characterization[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2000, 4(3): 91-110. doi: 10.1680/grim.2000.4.3.91
[6] KITAZUME M. Quality Control and Assurance of the Deep Mixing Method[M]. London: CRC Press, 2021.
[7] O'ROURKE T D, MCGINN A J. Case history of deep mixing soil stabilization for Boston central artery[C]//Geotechnical Engineering for Transportation Projects. Los Angeles, 2004: 77-136.
[8] SEIJI M, SHUBUYA S, TETSUJI M, et al. Soil improvement device: Japan, JP08-199556[P]. 1996-08-06.
[9] 木付拓磨, 澤口宏, 今井正, など. 大口径大深度深層混合処理工法の適用における リアルタイム管理システムの導入[J]. 日本材料科学学会雑誌, 2018, 67(1): 93-98. KIZUKI T, SAWAGUCHI H, IMAI T, et al. An introduction of real-time management system for applying deep-mixing method with large diameter and improvement depth (DCS method)[J]. Journal of the Society of Materials Science, Japan, 2018, 67(1): 93-98. (in Japanese)
[10] 鈴木孝, 齋藤邦夫, 原満生, など. 複合相対攪拌翼を用いた深層混合処理工法の改良原理と適用事例[J]. 日本材料科学学会雑誌, 2010, 59(1): 32-37. SUZUKI K, SAITOH K, HARA M, et al. Mixing mechanism and case study of deep stabilization method using contra-rotational mixing head[J]. Journal of the Society of Materials Science, 2010, 59(1): 32-37. (in Japanese)
[11] MORI K, UKAJI N, MIYAKAWA M. Invited Lecture: recent trends in the development of deep mixing methods in Japan[C]// Geotechnics for Sustainable Infrastructure Development. Singapore, 2020: 541-554.
[12] 島野嵐. 大口径相対攪拌工法の概要と施工事例: KS-S·MIX工法(特集基礎工, 地盤改良)建設機械施工一般社団法人[J]. 日本建設機械施工協会誌, 2017, 69(7): 59-63. SHIMANO A. Case study: large diameter contra-rotational soil mixing pils using KS-S MIX method[J]. JCMA, 2017, 69(7): 59-63. (in Japanese)
[13] 刘松玉, 宫能和, 冯锦林, 等. 双向水泥土搅拌桩机: CN1632232A[P]. 2005-06-29. LIU Songyu, GONG Nenghe, FEN Jinling, et al. Bi-directional cement soil mixing pile machine: CN1632232A[P]. 2005-06-29. (in Chinese)
[14] 刘松玉, 易耀林, 朱志铎. 双向搅拌桩加固高速公路软土地基现场对比试验研究[J]. 岩石力学与工程学报, 2008, 27(11): 2272-2280. doi: 10.3321/j.issn:1000-6915.2008.11.014 LIU Songyu, YI Yaolin, ZHU Zhiduo. Comparison tests on field bidirectional mixing column for soft ground improvement in expressway[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2272-2280. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.11.014
[15] 刘松玉. 新型搅拌桩复合地基理论与技术[M]. 南京: 东南大学出版社, 2014. LIU Songyu. Innovative Deep Mixing Method-Theory and Technology[M]. Nanjing: Southeast University Press, 2014. (in Chinese)
[16] 刘钟, 陈天雄, 杨宁晔, 等. 一种具有双向旋搅机构的智能钻机装备: CN218405399U[P]. 2023-01-31. LIU Zhong, CHEN Tianxiong, YANG Ningye, et al. Intelligent drilling machine equipment with bidirectional rotary stirring mechanism: CN218405399U[P]. 2023-01-31. (in Chinese)
[17] 刘钟, 李国民, 王占丑, 等. 一种搅拌桩机用同心三管三通道钻杆结构和组合注浆钻具: CN114319334A[P]. 2022-04-12. LIU Zhong, LI Guomin, WANG Zhanchou, et al. Concentric three-pipe three-channel drill rod structure for mixing pile machine and combined grouting drilling tool: CN114319334A[P]. 2022-04-12. (in Chinese)
[18] 陈湘生, 洪成雨, 苏栋. 智能岩土工程初探[J]. 岩土工程学报, 2022, 44(12): 2151-2159. doi: 10.11779/CJGE202212001 CHEN Xiangsheng, HONG Chengyu, SU Dong. Intelligent geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2151-2159. (in Chinese) doi: 10.11779/CJGE202212001
[19] ANTSAKLIS P J, PASSINO K M, WANG S J. An introduction to autonomous control systems[J]. IEEE Control Systems Magazine, 1991, 11(4): 5-13. doi: 10.1109/37.88585
[20] NAKAO K, INAZUMI S, TAKAUE T, et al. Visual evaluation of relative deep mixing method type of ground-improvement method[J]. Results in Engineering, 2021, 10: 100233. doi: 10.1016/j.rineng.2021.100233
[21] NAKAO K, INAZUMI S, TAKAUE T, et al. Evaluation of discharging surplus soils for relative stirred deep mixing methods by MPS-CAE analysis[J]. Sustainability, 2021, 14(1): 58. doi: 10.3390/su14010058
[22] ANDROMALOS K B, BAHNER E W. The application of various deep mixing methods for excavation support systems[C]// Grouting and Ground Treatment, New Orleans, 2003: 515-526.
[23] SHEN S L, MIURA N, KOGA H. Interaction mechanism between deep mixing column and surrounding clay during installation[J]. Canadian Geotechnical Journal, 2003, 40(2): 293-307.
[24] 深层搅拌法地基处理技术规范: DL/T5425—2018[S]. 北京: 中国电力出版社, 2018. Technical Specification for Deep Mixing Ground Treatment: DL/T5425—2018[S]. Beijing: China Electric Power Press, 2018. (in Chinese)
[25] 水泥土配合比设计规程: JGJ/T 233—2011[S]. 北京: 中国建筑工业出版社, 2011. Specification for Mix Proportion Design of Cement Soil: JGJ/T 233—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
[26] NAVIN M P, FILZ G M. Statistical analysis of strength data from ground improved with DMM columns[C]//Deep Mixing '05: Proc Int Conf on Deep Mixing Best Practice and Recent Advances, Stockholm, 2005.
-
期刊类型引用(11)
1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术
其他类型引用(8)
-
其他相关附件