• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软黏土地层盾构隧道底部注浆抬升量计算方法

孟凡衍, 贾琪, 陈仁朋, 陈曈, 程红战

孟凡衍, 贾琪, 陈仁朋, 陈曈, 程红战. 软黏土地层盾构隧道底部注浆抬升量计算方法[J]. 岩土工程学报, 2024, 46(11): 2401-2409. DOI: 10.11779/CJGE20230775
引用本文: 孟凡衍, 贾琪, 陈仁朋, 陈曈, 程红战. 软黏土地层盾构隧道底部注浆抬升量计算方法[J]. 岩土工程学报, 2024, 46(11): 2401-2409. DOI: 10.11779/CJGE20230775
MENG Fanyan, JIA Qi, CHEN Renpeng, CHEN Tong, CHENG Hongzhan. Method for calculating uplift of shield tunnels subjected to underlying grouting in soft clayey ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2401-2409. DOI: 10.11779/CJGE20230775
Citation: MENG Fanyan, JIA Qi, CHEN Renpeng, CHEN Tong, CHENG Hongzhan. Method for calculating uplift of shield tunnels subjected to underlying grouting in soft clayey ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2401-2409. DOI: 10.11779/CJGE20230775

软黏土地层盾构隧道底部注浆抬升量计算方法  English Version

基金项目: 

国家自然科学基金项目 52378338

国家自然科学基金项目 52108318

国家自然科学基金项目 51938005

详细信息
    作者简介:

    孟凡衍(1990—),男,博士,副教授,主要从事城市地下工程方面的研究工作。E-mail: fymeng@hnu.edu.cn

    通讯作者:

    陈仁朋, chenrp@hnu.edu.cn

  • 中图分类号: TU43

Method for calculating uplift of shield tunnels subjected to underlying grouting in soft clayey ground

  • 摘要: 下部地层注浆是盾构隧道过大沉降的常用治理措施。结构性软黏土地层中注浆引起的超孔压在注浆后持续消散,导致隧道抬升后因地层固结而发生沉降,进而降低隧道抬升效率。为预测下方地层注浆引起的盾构隧道纵向变形,提出了考虑土体结构性的盾构隧道底部注浆抬升量—沉降量两阶段计算方法。应用于宁波地铁2号线注浆抬升案例,隧道抬升效率计算值约51%,与同为软黏土地层的上海地铁2号线某区间盾构隧道实测抬升效率非常接近。此外,针对注浆参数、地层参数与隧道参数开展了参数分析,结果表明:隧道最终抬升量及抬升效率与土体基床系数、注浆体积呈正相关,与地层屈服应力成负相关;随埋深比增大,注浆区域隧道最终抬升量减小,而抬升效率变化甚微。计算方法可以为软黏土地层运营盾构隧道注浆抬升设计提供理论支撑。
    Abstract: Grouting in the underlying strata is a common remedial measure for the excessive settlement of shield tunnels. In the case of structured soft clays, the grouting process induces dissipation of the excess pore pressure in the surrounding strata, which leads to settlement of the tunnel after the grouting process and subsequently reduces the uplift efficiency. In order to predict the longitudinal deformation of shield tunnels caused by grouting in the underlying strata, a two-stage method for calculating the uplift and settlement of shield tunnels is proposed considering the structural characteristics of the soil. It is applied to a grouting uplift case in Ningbo Metro Line 2, and the calculated uplift efficiency of the tunnel is approximately 51%, which is close to the measured uplift efficiency of an interval of Shanghai Metro Line 2 in soft clayey ground. Furthermore, the parametric study is conducted, considering the parameters of grouting, strata and tunnel. The results indicate that the final uplift settlement and uplift efficiency of the tunnel are positively correlated with the coefficient of subgrade reaction and grouting volume, while negatively correlated with the yield stress of the strata. As the cover-to-depth ratio of the tunnel increases, the final uplift of the tunnel within the grouted range decreases, while the uplift efficiency exhibits negligible change. The proposed method provides support for the design of grouting for uplift of shield tunnel, in soft clayey ground.
  • 图  1   盾构隧道底部注浆抬升-沉降演化过程示意图

    Figure  1.   Schematic of evolution process of grouting-induced uplift and settlement of overlying shield tunnel

    图  2   注浆过程隧道抬升量计算模型

    Figure  2.   Theoretical model for calculating tunnel uplift during underlying grouting

    图  3   注浆过程盾构隧道抬升量计算流程

    Figure  3.   Calculation process of uplift of shield tunnel during underlying grouting

    图  4   注浆后隧道沉降量理论模型

    Figure  4.   Theoretical model for tunnel settlement after grouting

    图  5   注浆后隧道沉降量计算流程

    Figure  5.   Calculation process of tunnel settlement after grouting

    图  6   B断面超孔压分布曲线

    Figure  6.   Distribution of excess pore water pressure at Section B

    图  7   竖向应力增量计算结果与试验结果对比

    Figure  7.   Comparison between measured and calculated additional vertical stresses

    图  8   宁波地铁2号线地质剖面及注浆方案(166环~174环)

    Figure  8.   Geological profile and grouting scheme of Ningbo Metro Line 2 (Ring 166 to Ring 174)

    图  9   盾构隧道抬升量实测值与计算值对比

    Figure  9.   Comparison between measured and calculated uplifts of shield tunnel

    图  10   土体屈服应力比对隧道最终抬升量及抬升效率的影响

    Figure  10.   Effects of yield stress ratio on final uplift amount and uplifting efficiency of tunnel

    图  11   注浆体积对隧道最终抬升量及抬升效率的影响

    Figure  11.   Effects of grouting volume on final uplift amount and uplifting efficiency of tunnel

    图  12   隧道埋深比对隧道最终抬升量及抬升效率的影响

    Figure  12.   Effects of cover-to-diameter ratio of tunnel on final uplift amount and uplifting efficiency

    表  1   宁波地铁2号线盾构隧道注浆抬升工程参数

    Table  1   Parameters of grouting uplift project for shield tunnel of Ningbo Metro Line 2

    参数名称 参数取值
    隧道参数 C/m 10
    D/m 6.2
    (EI)'/(kN·m2) 1.91×108
    (κGA)'/kN 4.14×106
    土体参数
    (淤泥质黏土)
    v 0.4
    Es/MPa 2.83
    St 2.22
    k/(kN·m-3) 4273
    G/MPa 40
    κ 0.01
    λ 0.2
    Μ 1.5
    注浆参数 V/L 13300
    V0/L 950
    N/个 14
    nz/个 10
    r/m 0.283
    h/m 2
    注浆方式 连续双孔
    下载: 导出CSV
  • [1] 吴怀娜. 软土地层地铁盾构隧道长期沉降发生机理及纵向结构计算模型研究[D]. 上海: 上海交通大学, 2015.

    WU Huaina. Mechanism of Long-Term Settlement of Metro Tunnels in Soft Deposit and Longitudinal Structural Modelling[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)

    [2] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043. doi: 10.11779/CJGE201606009

    SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese) doi: 10.11779/CJGE201606009

    [3]

    ZHANG D M, HUANG Z K, WANG R L, et al. Grouting- based treatment of tunnel settlement: practice in Shanghai[J]. Tunnelling and Underground Space Technology, 2018, 80: 181-196. doi: 10.1016/j.tust.2018.06.017

    [4]

    ZHOU S H, XIAO J H, DI H G, et al. Differential settlement remediation for new shield metro tunnel in soft soils using corrective grouting method: case study[J]. Canadian Geotechnical Journal, 2018, 55(12): 1877-1887. doi: 10.1139/cgj-2017-0382

    [5]

    CHENG H Z, CHEN R P, WU H N, et al. A simplified method for estimating the longitudinal and circumferential behaviors of the shield-driven tunnel adjacent to a braced excavation[J]. Computers and Geotechnics, 2020, 123: 103595. doi: 10.1016/j.compgeo.2020.103595

    [6] 张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. doi: 10.3969/j.issn.1000-7598.2011.07.028

    ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028

    [7] 刘维正, 石名磊, 徐林荣. 考虑软黏土结构性损伤的圆柱孔扩张弹塑性分析[J]. 岩土工程学报, 2013, 35(3): 487-494. http://cge.nhri.cn/article/id/15005

    LIU Weizheng, SHI Minglei, XU Linrong. Elastoplastic analysis of cylindrical cavity expansion in natural sedimentary soft clay with structure damage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 487-494. (in Chinese) http://cge.nhri.cn/article/id/15005

    [8] 付艳斌, 陈湘生, 吴沛霖. 既有地铁隧道纵向注浆抬升机理分析[J]. 现代隧道技术, 2020, 57(5): 184-192.

    FU Yanbin, CHEN Xiangsheng, WU Peilin. Analysis on mechanism of longitudinal grouting uplift of existing metro tunnel[J]. Modern Tunnelling Technology, 2020, 57(5): 184-192. (in Chinese)

    [9]

    SAGASETA C. Analysis of undraind soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320. doi: 10.1680/geot.1987.37.3.301

    [10] 陈仁朋, 刘慕淳, 孟凡衍, 等. 基坑开挖旁侧盾构隧道结构横向受力与变形研究[J]. 岩土工程学报, 2023, 45(1): 24-32. doi: 10.11779/CJGE20211420

    CHEN Renpeng, LIU Muchun, MENG Fanyan, et al. Circumferential forces and deformations of shield tunnels due to lateral excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 24-32. (in Chinese) doi: 10.11779/CJGE20211420

    [11]

    WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317-323. doi: 10.1016/j.tust.2015.08.001

    [12] 既有轨道交通盾构隧道结构安全保护技术规程: T/CCES 36—2022[S]. 2022.

    Technical Code for Protection of Existing Shield Tunnels of Rail Transit: T/CCES 36—2022[S]. 2022. (in Chinese)

    [13]

    VESIĆ A B. Bending of beams resting on isotropic elastic solid[J]. Journal of the Engineering Mechanics Division, 1961, 87(2): 35-53. doi: 10.1061/JMCEA3.0000212

    [14]

    HASHIMOTO T, NAGAYA J, KONDA T. Prediction of ground deformation due to shield excavation in clayey soils[J]. Soils and Foundations, 1999, 39(3): 53-61. doi: 10.3208/sandf.39.3_53

    [15]

    MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-202. doi: 10.1063/1.1745385

    [16] 贾琪. 软黏土地层囊袋扩张扰动与上覆盾构隧道纵向变形研究[D]. 长沙: 湖南大学, 2023.

    JIA Qi. Study on Capsule Expansion Disturbance and Longitudinal Deformation of Overlying Shield Tunnel in Soft Clay Strata[D]. Changsha: Hunan University, 2023. (in Chinese)

    [17] 赵锡宏. 上海高层建筑桩筏与桩箱基础设计理论[M]. 上海: 同济大学出版社, 1998.

    ZHAO Xihong. Theory of Design of Piled Raft & Piled Box Foundations for Tall Buildings in Shanghai[M]. Shanghai: Tongji University Press, 1998. (in Chinese)

    [18] 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845.

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese)

    [19] 汪小兵, 王如路, 刘建航. 上海软土地层中运营地铁隧道不均匀沉降的治理方法[J]. 上海交通大学学报, 2012, 46(1): 26-31.

    WANG Xiaobing, WANG Rulu, LIU Jianhang. Disposal method of unequal settlement of metro tunnel in operation in Shanghai soft ground[J]. Journal of Shanghai Jiao Tong University, 2012, 46(1): 26-31. (in Chinese)

  • 期刊类型引用(10)

    1. 张翔,陈莹,雷真,范翔,赵彦淇. 高温冷热循环对花岗岩物理力学性能的影响. 科学技术与工程. 2025(02): 737-752 . 百度学术
    2. 翟明磊,李振华,杜锋,白海波,王文强. 考虑浆液渗流–岩体变形耦合作用的裂隙注浆模拟试验系统研制与应用. 岩石力学与工程学报. 2024(04): 878-889 . 百度学术
    3. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 . 百度学术
    4. 崔溦,裴介渲,江志安. 动水作用下岩体裂隙中颗粒运动规律的试验研究. 岩土力学. 2024(10): 2870-2878 . 百度学术
    5. 罗涛,黄正濛,李兵磊,刘谦,刘辉,陈志强. 含二维和三维预制裂隙的脆性岩石试样的破坏特征数值验证. 南昌大学学报(工科版). 2024(03): 345-350 . 百度学术
    6. 孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 . 百度学术
    7. 张乐 ,杨志兵 ,李东奇 ,陈益峰 . 浆液在透明复制裂隙中驱替行为的可视化试验研究. 岩土力学. 2023(06): 1708-1718 . 百度学术
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 吕鑫,杨科,方珏静,段敏克,王于,张寨男. 采空区破碎岩体负压注浆加固试验研究与机制分析. 岩石力学与工程学报. 2023(S2): 4174-4188 . 百度学术
    10. 李奔,刘汉乐,李培华,程锡治,王清,黄仕龙,刘新宇,金明哲. 碳酸盐岩石裂隙中DNAPL污染物迁移过程的电阻率成像. 地球物理学进展. 2023(06): 2704-2713 . 百度学术

    其他类型引用(8)

图(12)  /  表(1)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  68
  • PDF下载量:  89
  • 被引次数: 18
出版历程
  • 收稿日期:  2023-08-13
  • 网络出版日期:  2024-04-22
  • 刊出日期:  2024-10-31

目录

    /

    返回文章
    返回