• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

上海超深基坑地下连续墙的空间变形特性实测分析

李泽文, 谭勇, 廖少明, 李志义, 李航

李泽文, 谭勇, 廖少明, 李志义, 李航. 上海超深基坑地下连续墙的空间变形特性实测分析[J]. 岩土工程学报, 2024, 46(11): 2380-2390. DOI: 10.11779/CJGE20230760
引用本文: 李泽文, 谭勇, 廖少明, 李志义, 李航. 上海超深基坑地下连续墙的空间变形特性实测分析[J]. 岩土工程学报, 2024, 46(11): 2380-2390. DOI: 10.11779/CJGE20230760
LI Zewen, TAN Yong, LIAO Shaoming, LI Zhiyi, LI Hang. Field tests on performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2380-2390. DOI: 10.11779/CJGE20230760
Citation: LI Zewen, TAN Yong, LIAO Shaoming, LI Zhiyi, LI Hang. Field tests on performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2380-2390. DOI: 10.11779/CJGE20230760

上海超深基坑地下连续墙的空间变形特性实测分析  English Version

基金项目: 

国家自然科学基金项目 52090082

详细信息
    作者简介:

    李泽文(1998—),男,博士研究生,主要从事深基坑工程及周边环境保护方向的研究工作。E-mail: jervinlee@163.com

    通讯作者:

    廖少明, E-mail: liaosm@126.com

  • 中图分类号: TU470.3

Field tests on performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground

  • 摘要: 基于大量现场实测数据,对上海城区某大型通道工程超深基坑在开挖和降水耦合作用下地下连续墙的空间变形特性及规律进行了详细分析与研究。结果表明:①当基坑长深比、长宽比较小时,受坑角效应影响,地下连续墙变形呈现显著的三维效应,且局部出现较大横向挠曲,其中靠近坑角两侧的局部挠跨比大于中部,靠近坑角两侧的横向挠跨比平均值约为(0.32~0.56)δh/He,跨中位置横向挠跨比平均值约为(0.15~0.23)δh/He;②地下连续墙最大侧移δhm随着开挖深度H的增加而呈非线性变化,特别地当开挖深度H超过12 m之后,其变化率明显增加;③大幅度坑内超前预降水的卸荷效应会造成地下连续墙先期变形显著增加,并导致后续累计变形的大幅增加,受此影响,基坑开挖期间地下连续墙最大侧移及竖向变形分别为0.7%He,0.1%He(回弹),坑中立柱回弹变形最大为0.2%He,约为地下墙回弹的两倍,各变形量均显著大于上海地铁标准车站基坑(深度16~20 m)的实测统计数据。因此,在超深基坑施工过程中应尽量采用分步降水方式,避免一次性预降水。
    Abstract: Based on the field observation, the spatial characteristics of the diaphragm wall for a 31.5 m-deep excavation of a passageway project in Shanghai downtown under the coupling effects of excavation and dewatering are investigated. The results show that: (1) With the small length-depth ratio and length-width ratio, due to the corner effects, the lateral deflection of the diaphragm wall exhibits dramatical spatial effects, and the induced flexure along the length is great. The local deflection-span ratio (DSR) near the pit corner exhibits larger volume than that in the middle, with the average local DSR about 0.15δh/He to 0.23δh/He for the middle-span position and 0.32δh/He to 0.56δh/He for the position near the corner. (2) The maximum wall deflection increases non-linearly with the excavation depth H, and its rate of change raises especially when the excavation depth exceeds 12 m. (3) The excessive pre-dewatering dramatically enhances the deformation of the diaphragm wall, leading to a significant increase in the cumulative deformation of the subsequent excavation. Consequently, during the excavation, the maximum wall deflections and the maximum vertical displacement of wall top are 0.7%He and 0.1%He (uplift), respectively, while the uplift of column is 0.2%He, twice to the wall uplift. All of them are significantly larger than the statistics of normal Shanghai metro stations (excavation depth of 16 to 20 m). Thus the unloading effects of pre-dewatering should be paid great attention to during the construction of ultra-deep excavations, which should be substituted by step dewatering.
  • 图  1   基坑平面及周边环境

    Figure  1.   Site plan of excavations and surrounding environment

    图  2   基坑典型位置A-A剖面图

    Figure  2.   Typical cross section of A-A

    图  3   土层基本物理力学参数

    Figure  3.   Basic physical and mechanical parameters of soil layers at site

    图  4   地下连续墙监测布点平面图

    Figure  4.   Layout of instrumentation for diaphragm wall

    图  5   墙体侧向变形曲线(CX1~CX8)

    Figure  5.   Deflections of diaphragm wall (CX1~CX8)

    图  6   墙体最大侧移随时间及工况的变化

    Figure  6.   Development of maximum wall deflections with elapsed time

    图  7   地下连续墙最大侧向变形轮廓线

    Figure  7.   Profile of maximum wall deflection

    图  8   地连墙侧向变形空间分布

    Figure  8.   Spatial distribution of deflection of diaphragm wall

    图  9   围护结构变形模式表征

    Figure  9.   Characterization of deflection mode of retaining structures

    图  10   地连墙各深度水平剖面横向挠跨比

    Figure  10.   Deflection-span ratios of horizontal section at various depths

    图  11   墙体横向挠曲比与无量纲化侧向变形的关系

    Figure  11.   Relationship between horizontal deflection-span ratio and normalized lateral deflection of diaphragm wall

    图  12   最大侧向变形与最大侧向变形所在深度和开挖深度H的关系

    Figure  12.   Relationship between excavation depth and (a) maximum wall deflection and (b) depth of maximum wall deflections

    图  13   立柱及墙顶竖向变形与开挖深度的关系

    Figure  13.   Relationship between excavation depth and vertical displacement of columns and walls

    图  14   地连墙变形、地表沉降与坑底隆起包络线

    Figure  14.   Envelope curves of wall deflection, ground settlement and bottom uplift

    图  15   坑内外水位随时间发展

    Figure  15.   Development of water level inside and outside excavation with elapsed time

    图  16   坑内降水与开挖耦合作用下地连墙侧移变化

    Figure  16.   Development of wall deflection under coupling effects of dewatering and excavation

    表  1   深基坑开挖工况

    Table  1   Construction process of ultra-deep excavation

    工况编号 施工活动 起止时间
    S1 第1层土方 2021/01/06—2021/01/16
    S2 第2层土方 2021/01/17—2021/01/22
    S2b 停工(春节) 2021/01/22—2021/03/09
    S3 第3层土方 2021/03/09—2021/03/30
    S4 第4层土方 2021/03/30—2021/04/16
    S5 第5层土方 2021/04/16—2021/04/30
    S6 第6层土方 2021/04/30—2021/05/12
    S7 第7层土方 2021/05/12—2021/05/20
    S8 底板浇筑 2021/05/20—2021/05/26
    下载: 导出CSV

    表  2   地下连续墙倾斜度

    Table  2   Inclinations of diaphragm wall

    墙体 测点 k0/‰ k1/‰ k2/‰
    北墙 CX1 0.18 6.08 5.64
    CX2 0.30 6.64 5.94
    CX3 0.11 4.86 4.55
    东墙 CX4 0.02 1.63 1.56
    南墙 CX5 0.07 3.69 3.48
    CX6 0.45 6.51 5.52
    CX7 0.23 4.89 4.35
    西墙 CX8 0.03 1.25 1.22
    下载: 导出CSV
  • [1] 郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. doi: 10.11779/CJGE202201001

    ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese) doi: 10.11779/CJGE202201001

    [2]

    LIU G B, JIANG R J, NG C W W, et al. Deformation characteristics of a 38 m deep excavation in soft clay[J]. Canadian Geotechnical Journal, 2011, 48(12): 1817-1828. doi: 10.1139/t11-075

    [3] 张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. doi: 10.3969/j.issn.1000-7598.2011.07.028

    ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage analysis method of influence of foundation pit excavation on adjacent subway tunnel[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028

    [4] 冯世进, 高广运, 艾鸿涛, 等. 邻近地铁隧道的基坑群开挖变形分析[J]. 岩土工程学报, 2008, 30(增刊1): 112-117.

    FENG Shijin, GAO Guangyun, AI Hongtao, et al. Deformation analysis of foundation pit group adjacent to subway tunnel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 112-117. (in Chinese)

    [5] 郑刚, 聂东清, 程雪松, 等. 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39(5): 784-794. doi: 10.11779/CJGE201705002

    ZHENG Gang, NIE Dongqing, CHENG Xuesong, et al. Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 784-794. (in Chinese) doi: 10.11779/CJGE201705002

    [6]

    LIAO S M, WEI S F, SHEN S L. Structural responses of existing metro stations to adjacent deep excavations in Suzhou, China[J]. Journal of Performance of Constructed Facilities, 2016, 30(4): 04015089. doi: 10.1061/(ASCE)CF.1943-5509.0000845

    [7] 陈仁朋, 刘书伦, 孟凡衍, 等. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究[J]. 岩土工程学报, 2020, 42(6): 1132-1138. doi: 10.11779/CJGE202006018

    CHEN Renpeng, LIU Shulun, MENG Fanyan, et al. Centrifuge modeling of excavation effects on a nearby tunnel in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1132-1138. (in Chinese) doi: 10.11779/CJGE202006018

    [8] 李航, 廖少明, 何君佐, 等. 软土基坑分步开挖卸荷时效及其对邻侧隧道影响[J]. 中南大学学报(自然科学版), 2023, 54(3): 1044-1053.

    LI Hang, LIAO Shaoming, HE Junzuo, et al. Time effect of step-by-step excavation unloading in soft soils and its influence on adjacent tunnels[J]. Journal of Central South University (Science and Technology), 2023, 54(3): 1044-1053. (in Chinese)

    [9]

    LI H, TANG Y J, LIAO S M, et al. Structural response and preservation of historic buildings adjacent to oversized deep excavation[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021095. doi: 10.1061/(ASCE)CF.1943-5509.0001676

    [10]

    TAN Y, HUANG R Q, KANG Z J, et al. Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: building response[J]. Journal of Performance of Constructed Facilities, 2016, 30(6): 04016040. doi: 10.1061/(ASCE)CF.1943-5509.0000892

    [11] 徐中华, 王建华, 王卫东. 上海地区深基坑工程中地下连续墙的变形性状[J]. 土木工程学报, 2008, 41(8): 81-86.

    XU Zhonghua, WANG Jianhua, WANG Weidong. Deformation behavior of diaphragm walls in deep excavations in Shanghai[J]. China Civil Engineering Journal, 2008, 41(8): 81-86. (in Chinese)

    [12] 廖少明, 魏仕锋, 谭勇, 等. 苏州地区大尺度深基坑变形性状实测分析[J]. 岩土工程学报, 2015, 37(3): 458-469. doi: 10.11779/CJGE201503009

    LIAO Shaoming, WEI Shifeng, TAN Yong, et al. Field performance of large-scale deep excavations in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 458-469. (in Chinese) doi: 10.11779/CJGE201503009

    [13]

    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅱ: top-down construction of the peripheral rectangular pit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1894-1910. doi: 10.1061/(ASCE)GT.1943-5606.0000929

    [14]

    TAN Y, FAN D D, LU Y. Statistical analyses on a database of deep excavations in Shanghai soft clays in China from 1995–2018[J]. Practice Periodical on Structural Design and Construction, 2022, 27(1): 04021067. doi: 10.1061/(ASCE)SC.1943-5576.0000646

    [15] 郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153-2163. http://cge.nhri.cn/article/id/15591

    ZHENG Gang, ZENG Chaofeng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163. (in Chinese) http://cge.nhri.cn/article/id/15591

    [16] 曾超峰, 郑刚, 薛秀丽. 大面积基坑开挖前预降水对支护墙变形的影响研究[J]. 岩土工程学报, 2017, 39(6): 1012-1021. doi: 10.11779/CJGE201706006

    ZENG Chaofeng, ZHENG Gang, XUE Xiuli. Wall deflection induced by pre-excavation dewatering in large-scale excavations[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1012-1021. (in Chinese) doi: 10.11779/CJGE201706006

    [17] DG/TJ08-61—2018基坑工程技术标准[S]. 上海: 同济大学出版社, 2018.

    DG/TJ08-61—2018 Technical Code for Excavation Engineering[S]. Shanghai: Tongji University Press: 2018. (in Chinese)

    [18]

    OU C Y, CHIOU D C, WU T S. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345. doi: 10.1061/(ASCE)0733-9410(1996)122:5(337)

    [19]

    LEE F H, YONG K Y, QUAN K C N, et al. Effect of corners in strutted excavations: field monitoring and case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 339-349. doi: 10.1061/(ASCE)1090-0241(1998)124:4(339)

    [20]

    FINNO R J, BLACKBURN J T, ROBOSKI J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 30-36. doi: 10.1061/(ASCE)1090-0241(2007)133:1(30)

    [21]

    PECK. Deep excavation and tunnelling in soft ground[C]// ICSMFE Proc 7th Int Conf SMFE State of the Art Volume. Mexico: Balkema, 1969.

    [22]

    KUNG G T, JUANG C H, HSIAO E C, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)

    [23]

    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅰ: bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928

    [24]

    OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767. doi: 10.1139/t93-068

    [25] 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.

    XU Zhonghua. Deformation Behavior of Deep Excavations Supported by Permanent Structure in Shanghai Soft Deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)

    [26] 刘国彬, 侯学渊. 软土基坑隆起变形的残余应力分析法[J]. 地下工程与隧道, 1996(2): 2-7.

    LIU Guobin, HOU Xueyuan. Residual stress analysis method for uplift deformation of soft soil foundation pit[J]. Undergrourd Engineering and Tunmels, 1996(2): 2-7. (in Chinese)

    [27]

    HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017. doi: 10.1139/t98-056

图(16)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-09
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-10-31

目录

    /

    返回文章
    返回