Experimental study on degradation of EICP and xanthan gum treated calcareous silt under wetting-drying cycles
-
摘要: 生物聚合物(BP)是近年来一种新兴的环境友好型土体加固生物材料,然而因其具有水溶性,BP固化土在循环浸水工况下强度逐渐劣化。因此,提高BP加固土的耐侵水性十分重要。通过植物脲酶诱导碳酸钙沉(EICP)联合黄原胶(XG)对南海钙质粉土进行加固,对不同干湿循环次数下的固化粉土进行一系列物理,力学和微观分析测试。研究结果表明:随着黄原胶含量和EICP反应液浓度的增加,黄原胶(XG)固化土和联合(XG-EICP)固化土的无侧限抗压强度提升显著;随着干湿循环次数的增加,黄原胶固化土的强度降幅大于联合固化土,联合固化土具有更优的抗干湿循环特性。EICP和XG-EICP溶液试验结果表明:XG在EICP溶液中可以生成不溶于水的凝胶状沉淀,且粘连在XG-EICP沉淀上的碳酸钙颗粒较其纯EICP生成得碳酸钙颗粒体积更大。试验验证了植物脲酶诱导碳酸钙沉淀提高生物聚合物固化土抗干湿循环侵蚀的可行性,有望为海洋土加固提供新的思路与方法。Abstract: The biopolymer (BP) has been an emerging environment-friendly biomaterial for soil reinforcement in recent years. However, due to its water solubility, the strength of the BP-stabilized soil gradually deteriorates under cyclic wetting-drying conditions. Therefore, it is very important to improve the water resistance of the BP-strengthened soil. In this study, the calcareous silt in the South China Sea was reinforced by the plant urease-induced calcium carbonate precipitation (EICP) combined with the xanthan gum (XG). A series of physical, mechanical and microscopic tests are carried out on the samples under different wetting-drying cycles. The test results show that with the increase of the XG content and plant urease concentration, the unconfined compressive strength of the XG-stabilized soil and XG-EICP-stabilized soil increases significantly. With the increase of the wetting-drying cycles, the strength decrease of XG-stabilized soil is greater than that of the joint-stabilized soil, and the joint-stabilized soil has better resistance to the wetting-drying cycles. The results of the EICP and XG-EICP solution tests show that the XG can form a water-insoluble gel-like precipitate in the EICP solution, and the calcium carbonate particles attached to the XG-EICP precipitate are larger than those produced by the pure EICP. The tests verify the feasibility of the EICP to improve the erosion resistance of the biopolymer-solidified soils against the wetting-drying cycles, and it is expected to provide new ideas and methods for marine soil reinforcement.
-
Keywords:
- xanthan gum /
- EICP /
- unconfined compressive stress /
- shear wave velocity /
- wetting-drying cycle
-
-
表 1 土样物理性质[13]
Table 1 Physical properties of soil
物理性质 数值 D50 0.095 mm Cu 16.8 Cc 0.05 相对质量密度 2.77 液限 27% 塑限 15% 最大干密度 1.94 g/cm3 -
[1] XIAO Y, STUEDLEIN A W, RAN J, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 1-9.
[2] 倪静, 王子腾, 耿雪玉. 植物–生物聚合物联合法固土的试验研究[J]. 岩土工程学报, 2020, 42(11): 2131-2137. doi: 10.11779/CJGE202011019 NI Jing, WANG Ziteng, GENG Xueyu. Experimental study on combined plant-biopolymer method for soil stabilization[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2131-2137. (in Chinese) doi: 10.11779/CJGE202011019
[3] 李昊, 唐朝生, 尹黎阳, 等. MICP-FR协同作用改善钙质砂的力学性能及抗侵蚀试验研究[J]. 岩土工程学报, 2021, 43(10): 1941-1949. doi: 10.11779/CJGE202110021 LI Hao, TANG Chaosheng, YIN Liyang, et al. Experimental study on surface erosion resistances and mechanical behavior of MICP-FR-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1941-1949. (in Chinese) doi: 10.11779/CJGE202110021
[4] CHEN C H, WEI K, GU J Y, et al. Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil[J]. Polymers, 2022, 14(4): 787. doi: 10.3390/polym14040787
[5] 李召峰, 高益凡, 张健, 等. 水溶性植物胶改性水泥–水玻璃封堵材料试验研究[J]. 岩土工程学报, 2020, 42(7): 1312-1321. doi: 10.11779/CJGE202007015 LI Zhaofeng, GAO Yifan, ZHANG Jian, et al. Experimental study of water-soluble vegetable gum-modified cement-sodium silicate plugging materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1312-1321. (in Chinese) doi: 10.11779/CJGE202007015
[6] 张胜杰, 王鸥, 王天亮, 等. 黄原胶及瓜尔胶改良尾矿砂强度特性及微观机制[J]. 工程地质学报, 2023, 31(2): 441-448. ZHANG Shengjie, WANG Ou, WANG Tianliang, et al. Strength improvement and microscopic mechanisms of tailings sands using xanthan gum and guar gum[J]. Journal of Engineering Geology, 2023, 31(2): 441-448. (in Chinese)
[7] MANIVASAGAN P, KIM S K. Extracellular polysaccharides produced by marine bacteria[J]. Advances in Food and Nutrition Research, 2014, 72: 79-94.
[8] CABALAR A F, WISZNIEWSKI M, SKUTNIK Z. Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand[J]. Soil Mechanics and Foundation Engineering, 2017, 54(5): 356-361. doi: 10.1007/s11204-017-9481-1
[9] 刘瑾, 车文越, 郝社锋, 等. 基于CT技术的黄原胶加固土干湿循环条件下力学性能和微观结构劣化机制研究[J]. 岩土工程学报, 2024, 46(5): 1119-1126. doi: 10.11779/CJGE20230165 LIU Jin, CHE Wenyue, HAO Shefeng, et al. Study on deterioration mechanism of mechanical property and microscale structure in Xanthan gum reinforced soil under dry and wet cycle based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126. (in Chinese) doi: 10.11779/CJGE20230165
[10] 王天亮, 王林, 刘松松, 等. 黄原胶和瓜尔胶改良膨胀土力学特性试验研究[J]. 中国铁道科学, 2023, 44(2): 1-10. WANG Tianliang, WANG Lin, LIU Songsong, et al. Experimental study on mechanical properties of expansive soil improved by xanthan gum and guar gum[J]. China Railway Science, 2023, 44(2): 1-10. (in Chinese)
[11] MUGUDA S, LUCAS G, HUGHES P, et al. Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials[J]. Construction and Building Materials, 2020, 259: 1-15.
[12] 宋泽卓, 郝社锋, 梅红, 等. 干湿循环条件下生物聚合物改良砂土强度特性[J]. 复合材料学报, 2023, 40(4): 2285-2295. SONG Zezhuo, HAO Shefeng, MEI Hong, et al. Strength characteristics of biopolymer modified sand under dry-wet cycle[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2285-2295. (in Chinese)
[13] SHI J Q, XIAO Y, FU G Y, et al. Calcareous silt earthen construction using biopolymer reinforcement [J]. Journal of Building Engineering, 2023: 1-13.
[14] ALMAJED A, LATEEF M A, MOGHAL A A B, et al. State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (MICP) and enzyme-induced calcite precipitation (EICP) techniques for geotechnical and geoenvironmental applications[J]. Crystals, 2021, 11(4): 1-22.
[15] ARAB M G, OMAR M, ALMAJED A, et al. Hybrid technique to produce bio-bricks using enzyme-induced carbonate precipitation (EICP) and sodium alginate biopolymer[J]. Construction and Building Materials, 2021, 284: 1-12.
[16] LO C-Y, TIRKOLAEI H K, HUA M, et al. Durable and ductile double-network material for dust control [J]. Geoderma, 2020, 361: 1-10.
[17] HAMDAN N, ZHAO Z, MUJICA M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 4016089. doi: 10.1061/(ASCE)MT.1943-5533.0001604
[18] FREITAS I R, CORTEZ-VEGA W R, PIZATO S, et al. Xanthan gum as a carrier of preservative agents and calcium chloride applied on fresh-cut apple[J]. Journal of Food Safety, 2013, 33(3): 229-238. doi: 10.1111/jfs.12044
[19] SHI J Q, HAEGEMAN W, CNUDDE V. Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation[J]. Geotechnique, 2021, 71(4): 305-319. doi: 10.1680/jgeot.18.P.348
[20] FIORAVANTE V. Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing[J]. Soils and Foundations, 2000, 40(4): 129-142. doi: 10.3208/sandf.40.4_129
[21] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[22] GARCIA-OCHOA F, CASAS J A, MOHEDANO A F. Xanthan precipitation from solutions and fermentation broths[J]. Separation Science and Technology, 1993, 28(6): 1303-1313. doi: 10.1080/01496399308018038
[23] CABALAR A F, AWRAHEEM M H, KHALAF M M. Geotechnical properties of a low-plasticity clay with biopolymer[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 1-10.
[24] BERGMANN D, FURTH G, MAYER C. Binding of bivalent cations by xanthan in aqueous solution[J]. International Journal of Biological Macromolecules, 2008, 43(3): 245-251. doi: 10.1016/j.ijbiomac.2008.06.001
[25] IZAWA H, KADOKAWA J I. Preparation and characterizations of functional ionic liquid-gel and hydrogel materials of xanthan gum[J]. Journal of Materials Chemistry, 2010, 20(25): 5235-5241. doi: 10.1039/c0jm00595a
[26] TA X, ABBASI B, MUHUNTHAN B, et al. Monitoring of low-frequency seismic responses during microbial biofilm and EPS formations in unconsolidated sediments[J]. Environmental Geotechnics, 2021, 9(8): 524-533.
[27] 史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. doi: 10.11779/CJGE202202014 SHI Jinquan, XIAO Yang, LIU Hanlong, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) doi: 10.11779/CJGE202202014
[28] AHENKORAH I, RAHMAN M M, KARIM M R, et al. A review of enzyme induced carbonate precipitation (EICP): the role of enzyme kinetics [J]. Sustainable Chemistry, 2021, 2(1): 92-114. doi: 10.3390/suschem2010007
-
期刊类型引用(8)
1. 王彤彤,刘文龙,曹立雪,秦哲,张润昌. 浅埋隧道预应力锚固体承载效应模型实验研究. 矿业科学学报. 2024(03): 370-380 . 百度学术
2. 李煜,张升,叶新宇,刘玮,时一帆,李柔锋,田奔. 不同注浆工艺下土钉的现场拉拔试验. 中南大学学报(自然科学版). 2024(07): 2690-2700 . 百度学术
3. 陈昌富,李伟,朱世民,陈轶龙. 基于黏弹-塑性圆孔扩张理论压力注浆锚杆锚-土界面黏结强度计算方法. 中国公路学报. 2023(02): 41-51 . 百度学术
4. 王永刚,尉敏,王江,董耀斌,车志远,魏彬,杨御博,王志丰. 涨壳式预应力中空锚杆支护效果及注浆工艺改进研究. 建筑科学与工程学报. 2023(03): 142-151 . 百度学术
5. 张根宝,何仕林,陈昌富,徐长节,毛凤山. 基于离散元的GFRP筋-水泥土界面黏结特性分析. 工程地质学报. 2023(06): 2115-2124 . 百度学术
6. 张升,彭锐,叶新宇,李煜,刘蔚. 土工织物应用于新型压密注浆土钉的试验研究. 岩土工程学报. 2022(09): 1733-1740 . 本站查看
7. 秦永军,胡晓波,王光齐,何昭宇,范世英. 注浆钢花管加固技术在医院扩建工程深基坑的应用研究. 建筑结构. 2022(S2): 1837-1844 . 百度学术
8. 赵军,陈志鹏,高敏. 岩体单一裂隙动水注浆数值模拟研究. 安徽理工大学学报(自然科学版). 2022(06): 37-42 . 百度学术
其他类型引用(7)
-
其他相关附件