• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高面膜堆石坝周边缝处PVC-P土工膜渗透机理

张宪雷, 马仲阳, 刘贺松

张宪雷, 马仲阳, 刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理[J]. 岩土工程学报, 2024, 46(11): 2333-2340. DOI: 10.11779/CJGE20230744
引用本文: 张宪雷, 马仲阳, 刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理[J]. 岩土工程学报, 2024, 46(11): 2333-2340. DOI: 10.11779/CJGE20230744
ZHANG Xianlei, MA Zhongyang, LIU Hesong. Permeability mechanism of PVC-P geomembrane at peripheral joints of high membrane-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2333-2340. DOI: 10.11779/CJGE20230744
Citation: ZHANG Xianlei, MA Zhongyang, LIU Hesong. Permeability mechanism of PVC-P geomembrane at peripheral joints of high membrane-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2333-2340. DOI: 10.11779/CJGE20230744

高面膜堆石坝周边缝处PVC-P土工膜渗透机理  English Version

基金项目: 

国家自然科学基金项目 5200904

国家自然科学基金项目 51709114

河南省高等学校重点科研项目 23B570003

详细信息
    作者简介:

    张宪雷(1984—),男,博士,副教授,硕士生导师,主要从事高面膜堆石坝土工膜防渗结构方面研究。E-mail:zhangxianlei@ncwu.edu.cn

  • 中图分类号: TU43

Permeability mechanism of PVC-P geomembrane at peripheral joints of high membrane-faced rockfill dams

  • 摘要: 高面膜堆石坝坝面PVC-P土工膜防渗结构表现优越,差异位移致使周边缝处防渗结构中PVC-P土工膜处于大延伸率状态,是防渗体系的薄弱环节。针对变形态PVC-P土工膜防渗性能是否满足运行期工程技术要求,选用自主研制的变形态土工膜渗透试验仪展开了多组延伸率试样渗透性能试验研究,利用低场核磁共振技术探究了变形态PVC-P土工膜微观渗透演变机理。结果表明:变形态PVC-P土工膜防渗性能衰减,渗透系数随延伸率的增加而增大;延伸率的增长使得膜内孔喉发育、含量增加及孔喉连通性增强,这是防渗性能衰减的本质原因。尽管研究成果表明变形态PVC-P土工膜仍具有较低的渗透系数,但高面膜堆石坝周边缝处PVC-P土工膜拉伸变形复杂,可能存在局部损伤或破损情况,建议采取工程技术措施降低其延伸率,以延长服役周期。
    Abstract: The PVC-P geomembrane in the impervious structure of high-membrane faced rockfill dams has excellent impermeability. However, it has large elongation at the peripheral joints due to differential displacement, which is the weak section of the impervious system. To identify whether the permeability of the PVC-P geomembrane in tensile deformation meets the engineering requirements during the operation, a series of permeability tests at several elongations are carried out by a self-developed permeability tester for geomembrane in tensile deformation, and the microscopic permeability of the PVC-P geomembrane in tensile deformation microscopically is explored by the low-field nuclear magnetic resonance (NMR) technology. The results show that the impermeability of the PVC-P geomembrane decreases, and the permeability coefficient increases with the increase of elongation. It further causes the development of pore throats, the increase of content and the enhancement of pore-throat connectivity within the geomembrane, which is the essential reason for the decrease of the impermeability. The PVC-P geomembrane in tensile deformation still has a low permeability coefficient, however, it has complicated tensile deformation at the peripheral joints of the high-membrane faced rockfill dams, which may cause local damages or breakage of the geomembrane. Consequently, it is recommended to take engineering measures to reduce the elongation to prolong the service life.
  • 图  1   延伸率保持器结构图

    Figure  1.   Schematic diagram of elongation retainer

    图  2   渗漏试验装置

    Figure  2.   Setup of permeability tests

    图  3   PVC膜母材渗透系数-水压力曲线图

    Figure  3.   Curve of permeability coefficient and water pressure of PVC geomembrane base metal

    图  4   变形态试样渗透系数-水压力图

    Figure  4.   Diagram of permeability coefficient and water pressure of specimen in tensile deformation

    图  5   0%延伸率PVC-P低场核磁共振T2特征谱图

    Figure  5.   T2 characteristic spectra of PVC-P geomembrane of low-field NMR at elongation of 0%

    图  6   T22峰特征谱

    Figure  6.   T22 peak characteristic spectra

    图  7   变形态试样低场核磁共振T2特征谱

    Figure  7.   T2 characteristic spectrum of low-field NMR of specimen in tensile deformation

    图  8   变形态膜低场核磁共振T22特征谱

    Figure  8.   T22 characteristic spectra of low-field NMR of specimen in tensile deformation

    表  1   PVC-P土工膜主要物理力学特性表

    Table  1   Main physical and mechanical properties of PVC-P geomembrane

    技术指标 横向 纵向
    厚度/mm 2.0±0.2 2.0±0.2
    单位面积质量/(g·cm-2) 1.77 1.77
    断裂强度/MPa 9.65 10.10
    断裂延伸率/% 310.04 289.99
    注:执行技术标准为《SL235—2012土工合成材料测试规程》[18](以下简称《规程》)。
    下载: 导出CSV

    表  2   PVC-P土工膜母材孔喉分布表

    Table  2   Distribution of pore throat of PVC-P geomembrane base metal

    孔喉半径/μm 孔喉分布/%
    1.0 MPa 1.1 MPa 1.2 MPa 1.3 MPa 1.4 MPa 1.5 MPa
    0.05~0.15 0.2970 0.2890 0.2969 0.2818 0.2829 0.3506
    0.15~0.25 0.1634 0.1487 0.1602 0.1697 0.1807 0.2003
    0.25~0.35 0.0194 0.0267 0.0262 0.0374 0.0498 0.0504
    下载: 导出CSV

    表  3   所有试验延伸率试样孔喉分布表

    Table  3   Distribution of pore throat of specimen at all elongations

    孔喉半径/μm 孔喉分布
    0% 50% 80% 125%
    0.03~0.05 0 0 0.1266 0.6039
    0.05~0.15 0.2970 1.3989 2.1896 2.6535
    0.15~0.25 0.1634 0.4370 0.6491 0.8537
    0.25~0.35 0.0194 0.0435 0.0951 0.2187
    0.35~0.40 0 0 0 0.0254
    下载: 导出CSV
  • [1] 束一鸣, 吴海民, 姜晓桢. 中国水库大坝土工膜防渗技术进展[J]. 岩土工程学报, 2016, 38(增刊1): 1-9. doi: 10.11779/CJGE2016S1001

    SHU Yiming, WU Haimin, JIANG Xiaozhen. Progress of geomembrane seepage control technology for China Reservoir dam[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 1-9. (in Chinese) doi: 10.11779/CJGE2016S1001

    [2]

    KERMANI B, STOFFELS S M, XIAO M. Evaluation of effectiveness of geotextile in reducing subgrade migration in rigid pavement[J]. Geosynthetics International, 2019, 27(1): 1-43.

    [3]

    HUANG Y Y, XIE T, FEI D W, et al. Working behavior feedback of composite geomembranes based on seepage monitoring data[J]. Geosynthetics International, 2021(6): 28.

    [4]

    LIU S, WANG Y, FENG D. Compatibility of tailings-nonwoven geotextile under stress and the effect of sand filter[J]. Geosynthetics International, 2020, 28(2): 1-26.

    [5]

    KOERNER R M, WILKES J A. 2010 ICOLD Bulletin on geomembrane sealing systems for dams[J]. Geosynthetics, 2012, 30(2): 34-36, 38, 40, 42-43.

    [6]

    SCUERO A, VASCHETTI G. Geomembrane sealing systems for dams: ICOLD Bulletin 135[J]. Innovative Infrastructure Solutions, 2017, 2(1): 29.

    [7] 张宪雷, 刘云锋, 顾克, 等. 高面膜土石坝防渗结构中土工膜弯折(褶皱)试验研究[J]. 岩土工程学报, 2019, 41(8): 1555-1561. doi: 10.11779/CJGE201908021

    ZHANG Xianlei, LIU Yunfeng, GU Ke, et al. Experimental study on geomembrane bending (folding) in anti-seepage structure of membrane-faced rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1555-1561. (in Chinese) doi: 10.11779/CJGE201908021

    [8] 王柳江, 刘斯宏, 孙来, 等. 平原水库运行条件下的土工膜气胀试验研究[J]. 河海大学学报(自然科学版), 2017, 45(6): 522-527.

    WANG Liujiang, LIU Sihong, SUN Lai, et al. Experimental study on the air expansion of geomembrane under operation condition of plain reservoir[J]. Journal of Hohai University (Natural Sciences), 2017, 45(6): 522-527. (in Chinese)

    [9]

    ROWE R, ABDELATTY K M. Leakage and contaminant transport through a single hole in the geomembrane component of a composite liner[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139: 357-366.

    [10] 郦能惠. 高混凝土面板堆石坝新技术[M]. 北京: 中国水利水电出版社, 2007.

    LI Nenghui. Recent Technology for High Concrete Face Rockfill Dams[M]. Beijing: China Water & Power Press, 2007. (in Chinese)

    [11]

    AMJAD R M N, KUMAR S S. Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique[J]. Geotextiles and Geomembranes, 2021, 49(5): 1280-1293.

    [12]

    OMIDI O, LOTFI V. Seismic plastic-damage analysis of mass concrete blocks in arch dams including contraction and peripheral joints[J]. Soil Dynamics and Earthquake Engineering, 2017, 95: 118-137.

    [13]

    OZSU E, ACAR Y. Liquid conduction tests for geomembranes[J]. Geotextiles and Geomembranes, 1992, 11: 291-318.

    [14]

    AMINABHAVI T M, NAIK H G. Chemical compatibility testing of geomembranes-sorption/desorption, diffusion, permeation and swelling phenomena[J]. Geotextiles & Geomembranes, 1998, 16(6): 333-354.

    [15]

    XIAO Q. Drying process of sodium alginate edible films forming solutions studied by LF NMR[J]. Food Chemistry, 2018, 250: 83-88.

    [16] 徐国雷, 张宪雷, 马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理[J]. 水电能源科学, 2022, 40(12): 138-142.

    XU Guolei, ZHANG Xianlei, MA Zhongyang. Mechanism of PVC membrane permeation in face rock fill dam based on low-field NMR technology[J]. Water Resources and Power, 2022, 40(12): 138-142. (in Chinese)

    [17]

    WEI L, CHAI S, XUE M L, et al. Structural damage and shear performance degradation of fiber–lime–soil under freeze–thaw cycling[J]. Geotextiles and Geomembranes, 2022, 50(5): 845-57.

    [18] 土工合成材料测试规程: SL 235—2012[S]. 北京: 中国水利水电出版社, 2012.

    Specification for Test and Measurement of Geosynthetics: SL 235—2012[S]. Beijing: China Water & Power Press, 2012. (in Chinese)

    [19] 张宪雷, 尹春杰, 马仲阳, 等. 基于低场核磁共振技术PVC-P土工膜细观渗透机理研究[J]. 岩土工程学报, 2024, 46(4): 880-889. doi: 10.11779/CJGE20221546

    ZHANG Xianlei, YIN Chunjie, MA Zhongyang, et al. Micropermeation mechanism of PVC-P geomembrane by low field NMR technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 880-889. (in Chinese) doi: 10.11779/CJGE20221546

    [20]

    PAN D Z, WANG L Z, PAN C H. State-space solution of seabed-geotextile systems subjected to cyclic wave loadings[J]. Geotextiles and Geomembranes, 2007, 25(4/5): 242-250.

    [21]

    ZHANG X L, WU Y Y, MA Z Y, et al. Mechanical properties of PVC geomembrane under uniaxial tension based on non-contact measurement[J]. Geosynthetics International, 2023, 30(3): 259-273.

    [22]

    ALHAJJI E, MRAD O. A low field NMR study of water adsorbed on silica and alumina surfaces[J]. Composite Interfaces, 2012, 19(5): 313-320.

    [23]

    BLACK P B, TICE A R. Comparison of soil freezing curve and soil water curve data for Windsor sandy loam[J]. Water Resources Research, 1989, 25(10): 2205-2210.

    [24]

    WEBBER J B W, CORBETT P, SEMPLE K T, et al. An NMR study of porous rock and biochar containing organic material[J]. Microporous & Mesoporous Materials, 2013, 178(18): 94-98.

  • 期刊类型引用(14)

    1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
    2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
    3. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 . 百度学术
    4. 刘军,苗现国,许军龙,卓慧英,牛天娇. 砂土相对密度试验研究和探讨. 工程勘察. 2023(09): 26-34 . 百度学术
    5. 瞿茹,朱长歧,刘海峰,王天民,马成昊,王星. 珊瑚砂界限干密度确定方法的比较研究. 岩土力学. 2023(S1): 461-475 . 百度学术
    6. 李志鹏,糟凯龙,何建新,杨海华. 粉煤灰掺量对改良沙漠土毛细水上升规律的影响分析. 粉煤灰综合利用. 2022(01): 87-92 . 百度学术
    7. 李识博,代俊芳,吴江伟,肖乐乐. 考虑粒组分类影响的最小孔隙比分布及模型验证. 岩土力学. 2022(S2): 193-204 . 百度学术
    8. 戴仁辉,李明东,陈士军,易进翔,高玉峰. 不同粒度粗粒的极限孔隙比和破碎特征. 建筑材料学报. 2021(02): 427-431+439 . 百度学术
    9. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗透侵蚀下砂性土细颗粒流失率预测方法. 地下空间与工程学报. 2021(06): 1704-1712 . 百度学术
    10. 刘勇,廖燕. 动荷载作用下砂土强度弱化的试验研究. 四川建筑科学研究. 2020(01): 65-70 . 百度学术
    11. 赵文丽. 黏粒含量对砂土抗剪强度影响的试验研讨. 建材与装饰. 2020(18): 203+205 . 百度学术
    12. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗流作用下颗粒土起动临界坡降研究. 地下空间与工程学报. 2020(S1): 87-93 . 百度学术
    13. 吴加武. 挤密砂桩在直立式护岸抗液化处理中的应用. 土工基础. 2019(01): 27-30+34 . 百度学术
    14. 黎亮,杨晓松,李宏伟. 南疆绿洲区含残膜砂土击实特性试验研究. 公路. 2019(11): 199-203 . 百度学术

    其他类型引用(14)

图(8)  /  表(3)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  23
  • PDF下载量:  51
  • 被引次数: 28
出版历程
  • 收稿日期:  2023-08-03
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-10-31

目录

    /

    返回文章
    返回