• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

纵向槽钢和轴力共同作用的盾构隧道等效刚度解析解

江学辉, 颜建伟, 罗文俊, 刘天宇, 徐长节

江学辉, 颜建伟, 罗文俊, 刘天宇, 徐长节. 纵向槽钢和轴力共同作用的盾构隧道等效刚度解析解[J]. 岩土工程学报, 2024, 46(10): 2166-2173. DOI: 10.11779/CJGE20230650
引用本文: 江学辉, 颜建伟, 罗文俊, 刘天宇, 徐长节. 纵向槽钢和轴力共同作用的盾构隧道等效刚度解析解[J]. 岩土工程学报, 2024, 46(10): 2166-2173. DOI: 10.11779/CJGE20230650
JIANG Xuehui, YAN Jianwei, LUO Wenjun, LIU Tianyu, XU Changjie. Analytical solution for equivalent stiffness of shield tunnels under combined action of longitudinal channel steel and axial force[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2166-2173. DOI: 10.11779/CJGE20230650
Citation: JIANG Xuehui, YAN Jianwei, LUO Wenjun, LIU Tianyu, XU Changjie. Analytical solution for equivalent stiffness of shield tunnels under combined action of longitudinal channel steel and axial force[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2166-2173. DOI: 10.11779/CJGE20230650

纵向槽钢和轴力共同作用的盾构隧道等效刚度解析解  English Version

基金项目: 

国家杰出青年科学基金项目 52225210

国家自然科学基金项目 51978265

江西省防灾减灾及应急管理重点实验室项目 

详细信息
    作者简介:

    江学辉(1987―),男,博士研究生,主要研究方向:隧道理论及加固技术研究。E-mail: jiangxh2020@126.com

    通讯作者:

    罗文俊, E-mail: lwj06051979@163.com

  • 中图分类号: TU45

Analytical solution for equivalent stiffness of shield tunnels under combined action of longitudinal channel steel and axial force

  • 摘要: 为准确快速地预测纵向槽钢加固技术对盾构隧道等效刚度的影响,开展了纵向槽钢加固技术的理论研究。解析地提出了纵向槽钢和纵向轴力耦合作用的盾构隧道等效刚度理论解,并与经典理论、模型试验和数值模拟对比验证了本方法的可靠性。结果表明盾构隧道的中性轴φ随槽钢、纵向轴压力的增加而减小,其大小直接改变了隧道管片间的接触状态,从而影响了隧道的等效刚度;盾构隧道的等效刚度与纵向轴压力呈S曲线正相关,与弯矩呈非线性反相关,与隧道管片宽度、槽钢截面面积、数量、弹性模量呈线性正比关系;盾构隧道的等效刚度贡献大小顺序依次为纵向槽钢数量、截面面积、弹性模量。从理论上诠释了纵向槽钢等敏感性参数对隧道等效刚度的影响机理,可准确快速地预测纵向槽钢加固效果。
    Abstract: To accurately and quickly predict the effects of longitudinal channel steel reinforcement technology on the equivalent stiffness of a shield tunnel, the theoretical researches are conducted on the longitudinal channel steel reinforcement technology. A new analytical solution is proposed for the equivalent bending stiffness of the shield tunnel under the combined action of longitudinal channel steel and axial force. The solution can be degenerateed into a special case without longitudinal channel steel, and it is validated those the classical theory, model tests and numerical simulation. The results show that the neutral axial φ of the shield tunnel decreases with the increasing longitudinal channel steel and longitudinal axial force, directly affecting the contact state between tunnel segments, which will impact the equivalent stiffness of the shield tunnel. The equivalent stiffness of the shield tunnel increases nonlinearly in an S-curve with the longitudinal axial force and decreases with the increasing bending moment, which is directly proportional to the width of tunnel segment, the number, elastic modulus and sectional area of channel steel. The influential order on the equivalent stiffness of the shield tunnel is the number, sectional area and elastic modulus of longitudinal channel steel. The influence mechanism of sensitivity parameters of longitudinal channel steel on the equivalent stiffness of tunnels is theoretically explained, which enables accurate and quick prediction of the reinforcement effects of longitudinal channel steel.
  • 图  1   等效线刚度及槽钢连接示意图

    Figure  1.   Diagram of equivalent linear stiffness and connection of channel steel

    图  2   应力-应变计算模型

    Figure  2.   Computational model for stress-strain

    图  3   等效刚度有效率与荷载关系图

    Figure  3.   Relationship between effective ratio of equivalent stiffness and load

    图  4   等效刚度有效率与螺栓数量

    Figure  4.   Relationship between effective ratio of equivalent stiffness and number of bolts

    图  5   纵向轴力对等效刚度和中性轴的影响

    Figure  5.   Effects of longitudinal axial force on equivalent stiffness and neutral axis of tunnel

    图  6   弯矩和纵向轴力对等效刚度的影响

    Figure  6.   Effects of bending moment and longitudinal axial force on equivalent stiffness of tunnel

    图  7   管片宽度对等效刚度的影响

    Figure  7.   Effects of width of tunnel segment on equivalent stiffness of tunnel

    图  8   槽钢数量对等效刚度的影响

    Figure  8.   Effect of the number of channel steel on the equivalent stiffness of tunnel

    图  9   槽钢面积对等效刚度的影响

    Figure  9.   Effects of sectional area of channel steel on equivalent stiffness of tunnel

    图  10   槽钢模量对等效刚度的影响

    Figure  10.   Effects of elastic modulus of longitudinal channel steel on equivalent stiffness of tunnel

    表  1   隧道设计参数[10]

    Table  1   Design parameters of tunnel[10]

    原型隧道 模型隧道
    R t n lt Et Eb lb Rb R t n lt Et Eb lb Rb
    3.1
    m
    350
    mm
    17 1.0
    m
    34.5
    GPa
    206
    GPa
    400 mm 15
    mm
    200 mm 23 mm 6 65 mm 2.06 GPa 2.41 GPa 34 mm 8
    mm
    下载: 导出CSV

    表  2   隧道设计参数[22]

    Table  2   Design parameters of tunnel[22]

    R t n lt Et Eb lb Rb
    3.0
    m
    300 mm 16 1.0
    m
    34.5 GPa 206 GPa 400 mm 15 mm
    下载: 导出CSV

    表  3   纵向槽钢设计参数(C14b)

    Table  3   Design parameters of longitudinal channel steel

    槽钢厚度b 槽钢数量ng 槽钢模量Ecg 槽钢面积Ag
    60 mm 7根 206 GPa 21.316 cm2
    下载: 导出CSV
  • [1] 梁荣柱, 曹世安, 向黎明, 等. 地表堆载作用下盾构隧道纵向受力机制试验研究[J]. 岩石力学与工程学报, 2023, 42(3): 736-747.

    LIANG Rongzhu, CAO Shian, XIANG Liming, et al. Experimental investigation on longitudinal mechanical mechanism of shield tunnels subjected to ground surface surcharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 736-747. (in Chinese)

    [2] 唐永锋. 盾构隧道纵向变形破坏机理及加固措施模型试验研究[D]. 广州: 华南理工大学, 2021.

    TANG Yongfeng. Model Test Study on Longitudinal Deformation Failure Mechanism and Reinforcement Measures of Shield Tunnel[D]. Guangzhou: South China University of Technology, 2021. (in Chinese)

    [3]

    ZHANG J, ZHAO M. Experimental study on mechanical behavior of the skew joints of shield tunnels under large eccentric compressive loading[J]. Tunnelling and Underground Space Technology, 2021, 111(5): 1-14.

    [4]

    JIANG X, LUO W, ZHU B, et al. Evaluation of longitudinal equivalent bending stiffness of shield tunnel with residual jacking force[J]. Appl Sci, 2023, 13(13): 1-4.

    [5] 廖少明, 门燕青, 肖明清, 等. 软土盾构法隧道纵向应力松弛规律的实测分析[J]. 岩土工程学报, 2017, 39(5): 795-803.

    LIAO Shaoming, MEN Yanqing, XIAO Mingqing, et al. Field tests on longitudinal stress relaxation along shield tunnel in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 795-803. (in Chinese)

    [6] 耿萍, 陈枰良, 张景, 等. 轴力和弯矩共同作用下盾构隧道纵向非线性效抗弯刚度研究[J]. 岩石力学与工程学报, 2017, 36(10): 2522-2534.

    GENG Ping, CHEN Pingliang, ZHANG Jing, et al. Nonlinear longitudinal equivalent bending stiffness of shield tunnel under the combined effect of axial force and bending moment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2522-2534. (in Chinese)

    [7]

    GENG P, MEI S Y, ZHANG J, et al. Study on seismic performance of shield tunnels under combined effect of axial force and bending moment in the longitudinal direction[J]. Tunnelling and Underground Space Technology, 2019, 91: 103004. doi: 10.1016/j.tust.2019.103004

    [8] 王祖贤, 施成华, 龚琛杰, 等. 考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型[J]. 岩土力学, 2023, 44(5): 1295-1308.

    WANG Zuxian, SHI Chenghua, GONG Chenjie, et al. Calculation model of longitudinal nonlinear equivalent bending stiffness of shield tunnel considering its transverse performance[J]. Rock and Soil Mechanics, 2023, 44(5): 1295-1308. (in Chinese)

    [9] 黄大维, 陈后宏, 罗文俊, 等. 纵向残余顶推力对盾构隧道纵向刚度影响试验研究[J]. 中国铁道科学, 2023, 44(1): 142-152. doi: 10.3969/j.issn.1001-4632.2023.01.15

    HUANG Dawei, CHEN Houhong, LUO Wenjun, et al. Experimental study on the influence of shield tunnel longitudinal rigidity induced by longitudinal residual jacking force[J]. China Railway Science, 2023, 44(1): 142-152. (in Chinese) doi: 10.3969/j.issn.1001-4632.2023.01.15

    [10]

    LI X J, ZHOU X Z, HONG B C, et al. Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces[J]. Tunnelling and Underground Space Technology, 2019, 86: 128-137. doi: 10.1016/j.tust.2019.01.011

    [11] 张冬梅, 邹伟彪, 闫静雅. 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36(12): 2203-2212. doi: 10.11779/CJGE201412007

    ZHANG Dongmei, ZOU Weibiao, YAN Jingya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. (in Chinese) doi: 10.11779/CJGE201412007

    [12] 陈仁朋, 张品, 刘湛, 等. MJS水平桩加固在盾构下穿既有隧道中应用研究[J]. 湖南大学学报(自然科学版), 2018, 45(7): 103-110.

    CHEN Renpeng, ZHANG Pin, LIU Zhan, et al. Application study of MJS horizontal column reinforcement in shield tunneling[J]. Journal of Hunan University (Natural Sciences), 2018, 45(7): 103-110. (in Chinese)

    [13]

    HU J, LIU Y, WEI H, et al. Finite-element analysis of heat transfer of horizontal ground-freezing method in shield- driven tunneling[J]. International Journal of Geomechanics, 2017, 17(10): 04017080. doi: 10.1061/(ASCE)GM.1943-5622.0000978

    [14] 孙旻, 徐伟. 软土地层管幕法施工三维数值模拟[J]. 岩土工程学报, 2006, 28(增刊1): 1497-1500.

    SUN Min, XU Wei. 3D numerical simulation of pipe-curtain method in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S1): 1497-1500. (in Chinese)

    [15] 谭忠盛, 孙晓静, 马栋, 等. 浅埋大跨隧道管幕预支护技术试验研究[J]. 土木工程学报, 2015, 48(增刊1): 429-434.

    TAN Zhongsheng, SUN Xiaojing, MA dong, et al. Experimental research of pipe-roof pre-supporting technology for the shallow large-span tunnel[J]. China Civil Engineering Journal, 2015, 48(S1): 429-434. (in Chinese)

    [16] 张冬梅, 逄健, 任辉, 等. 港珠澳大桥拱北隧道施工变形规律分析[J]. 岩土工程学报, 2020, 42(9): 1632-1641.

    ZHANG Dongmei, PANG Jian, REN Hui, et al. Observed deformation behavior of Gongbei Tunnel of Hong Kong-Zhuhai-Macao Bridge during construction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1632-1641. (in Chinese)

    [17] 柳献, 唐敏, 鲁亮, 等. 内张钢圈加固盾构隧道结构承载能力的试验研究: 整环加固法[J]. 岩石力学与工程学报, 2013, 32(11): 2300-2306.

    LIU Xian, TANG Min, LU Liang, et al. Experimental study of ultimate bearing capacity of shield tunnel reinforced by full-ring steel plate[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2300-2306. (in Chinese)

    [18] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043.

    SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese)

    [19]

    LIU D J, WANG F, HU Q F, et al. Structural responses and treatments of shield tunnel due to leakage: a case study[J]. Tunnelling and Underground Space Technology, 2020, 103: 103471. doi: 10.1016/j.tust.2020.103471

    [20] 梁荣柱, 王凯超, 黄亮, 等. 类矩形盾构隧道纵向等效抗弯刚度解析解[J]. 岩土工程学报, 2022, 44(2): 212-223.

    LIANG Rongzhu, WANG Kaichao, HUANG Liang, et al. Analytical solution for longitudinal equivalent bending stiffness of quasi-rectangular shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 212-223. (in Chinese)

    [21]

    YUKIO S B, KAZUHIKO K, NAOMI O, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[C]// Proceedings of Japan Society of Civil Engineering, Doboku Gakkai Ronbunshu, 1988: 319-327.

    [22] 钟小春, 张金荣, 秦建设, 等. 盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J]. 岩土力学, 2011, 32(1): 132-136. doi: 10.3969/j.issn.1000-7598.2011.01.021

    ZHONG Xiaochun, ZHANG Jinrong, QIN Jianshe, et al. Simplified calculation model for longitudinal equivalent bending stiffness of shield tunnel and its influence factors' analysis[J]. Rock and Soil Mechanics, 2011, 32(1): 132-136. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.021

图(10)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回