Model for calculating water and earth pressures of shallowly buried pressurized shield tunnels under external water infiltration and internal water exosmosis conditions
-
摘要: 针对浅埋有压盾构隧道内外水力交互渗流下引起的松动水土压力变化,基于修正镜像法获得了考虑内水压的地层渗流场分布与水力梯度。随后基于考虑松动区内部应力分布的修正Terzaghi公式给出了考虑隧道内水压下的松动区任意位置的水土压力解,并与数值模拟结果进行了对比验证。主要结论如下:采用圆弧拱和抛物线拱的主应力轨迹线能够有效描述隧顶松动区应力分布情况;当地层渗透系数与衬砌渗透系数比值小于1000时,内压水头大小对水土压力的影响显著;内压水头的增加将减小松动区有效应力,引起上覆土体卸载,同时引起隧顶松动区总应力增大,表明该范围内孔隙水压的增长对水土压力的变化占据主导作用;5参数正交分析结果的线性回归分析结果表明隧道埋深和半径对土压力有显著的正向影响,土体摩擦角和黏聚力均表现为负向影响。在相对低渗透地层条件下,内压水头对隧顶有效应力和总应力分别表现为显著的负向和正向影响。Abstract: Focusing on the variation of relaxed water and earth pressures of shallowly shield tunnels under external water infiltration and internal water exosmosis conditions, the seepage field and hydraulic gradient considering internal water pressure are firstly, derived based on the modified image method. Then, the solutions for the water and earth pressures in arbitrary locations within the relaxed zone are obtained based on the modified Terzaghi's formula considering the horizontal distribution of stress. The effectiveness of the computational model is verified by comparing with the numerical results. It is shown that the principal stress path in either an arc or a parabola form can effectively capture the stress distribution within the relaxed zone over the tunnel crown. When the ratio of permeability of strata to that of linings is below 1000, the internal water pressure head has significant effects on the water and earth pressures. The increase of internal water pressure head will cause the reduction on the effective stress in the relaxed zone, which induces the unloading of soils. Moreover, it will also result in the increase of the total pressures at the tunnel crown of the relaxed zone, implying that the growth in pore pressure dominates the variation of the water and earth pressures. The linear regression of five-parameter orthogonal analysis suggests that the buried depth and tunnel radius have significant positive impacts on the earth pressures, while the influences of friction angle and cohesion are negative. Under the scenarios of relatively low-permeable strata, the influences of internal water head on the total and effective earth pressures at the tunnel crown are significantly negative and positive, respectively.
-
-
图 3 考虑土条内部应力分布的松动土压力分析模型[20]
Figure 3. Analytical model for relaxed earth pressure considering internal distribution of soil strips
表 1 5因素5水平正交分析表
Table 1 Orthogonal analysis with 5 parameters and 5 levels
因素 参数 水平 1 2 3 4 5 1 隧道半径R/m 2 3 4 5 6 2 隧道埋深/m 10 12 14 16 18 3 内摩擦角φ/(°) 20 25 30 35 40 4 黏聚力c/kPa 0 5 10 15 20 5 隧洞内压水头Hi/m 0 10 20 30 40 -
[1] WU H N, SHEN S L, CHEN R P, et al. Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels[J]. Computers and Geotechnics, 2020, 122(2): 103549.
[2] XIE J, HUANG X, JIN G. Analytical model for the sealant performance of tunnel gasketed joints based on multi-scale contact and percolation theories[J]. Underground Space, 2024, 14: 319-337. doi: 10.1016/j.undsp.2023.08.004
[3] 彭益成, 龚琛杰, 丁文其, 等. 考虑管片接头渗流的盾构隧道流固耦合模型研究[J]. 土木工程学报, 2022, 55(4): 95-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202204010.htm PENG Yicheng, GONG Chenjie, DING Wenqi, et al. Fluid-structure coupling model of shield tunnel considering seepage of segmental joints[J]. China Civil Engineering Journal, 2022, 55(4): 95-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202204010.htm
[4] 徐国文, 卢岱岳. 接头抗弯刚度非线性及渗水影响下盾构隧道力学行为分析[J]. 岩土工程学报, 2016, 38(7): 1202-1211. doi: 10.11779/CJGE201607006 XU Guowen, LU Daiyue. Mechanical behavior of shield tunnel considering nonlinearity of flexural rigidity and leakage of joints[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1202-1211. (in Chinese) doi: 10.11779/CJGE201607006
[5] 孙雅珍, 于阳, 王金昌, 等. 考虑界面效应的内张钢圈加固盾构管片结构力学性能研究[J]. 岩土工程学报, 2022, 44(2): 343-351. doi: 10.11779/CJGE202202016 SUN Yazhen, YU Yang, WANG Jinchang, et al. Mechanical properties of linings of shield tunnel strengthened by steel plates considering interface effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 343-351. (in Chinese) doi: 10.11779/CJGE202202016
[6] ZHANG N, SHEN J S, ZHOU A, et al. Tunneling Induced Geohazards in Mylonitic Rock Faults with Rich Groundwater: A Case Study in Guangzhou[J]. Tunnelling and Underground Space Technology, 2018, 74: 262-272. doi: 10.1016/j.tust.2017.12.021
[7] HUANG X, LIU W, ZHANG Z, et al. Exploring the Three-Dimensional Response of a Water Storage and Sewage Tunnel Based on Full-Scale Loading Tests[J]. Tunnelling and Underground Space Technology, 2019, 88: 156-168. doi: 10.1016/j.tust.2019.03.003
[8] 谢家冲, 黄昕, 金国龙, 等. 局部水力交互下盾构隧道渗流与力学响应研究[J]. 岩土力学, 2023, 44(4): 1179-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202304023.htm XIE Jiachong, HUANG Xin, JIN Guolong, et al. Seepage characteristics and mechanical response of shield tunnels under localized leakage and exosmosis[J]. Rock and Soil Mechanics, 2023, 44(4): 1179-1189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202304023.htm
[9] 周龙, 朱合华, 沈奕, 等. 内水压盾构隧道管片衬砌受力与变形特性分析[J]. 岩土工程学报, 2023, 45(9): 1763-1772. doi: 10.11779/CJGE20220761 ZHOU Long, ZHU Hehua, SHEN Yi, et al. Stress and deformation properties of shield segmental linings under internal water pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1763-1772. (in Chinese) doi: 10.11779/CJGE20220761
[10] 宋锦虎, 缪林昌, 高学伸, 等. 基于土体渗透系数变化的管片荷载流-固耦合解析[J]. 岩土力学, 2016, 37(12): 3520-3528. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612022.htm SONG Jinhu, MIAO Linchang, GAO Xueshen, et al. Coupled Fluid-Solid Analysis of Bearing Characteristic of Segment Based on Change of Soil Permeability Coefficient[J]. Rock and Soil Mechanics, 2016, 37(12): 3520-3528. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612022.htm
[11] 张治国, 沈安鑫, 徐晨, 等. 黏性场地列车荷载影响下衬砌半渗透边界盾构隧道诱发地表固结沉降解[J]. 中国公路学报, 2022, 35(5): 116-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205011.htm ZHANG Zhiguo, SHEN Anxin, XU Chen, et al. Analytical Solution for Surface Consolidation Settlements Induced by Shield Tunneling with Semi-permeable Boundary Conditions Under Train Loading in Viscous Field[J]. China Journal of Highway and Transport, 2022, 35(5): 116-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205011.htm
[12] 王将, 袁大军, 金大龙, 等. 稳态渗流条件下盾构隧道松动土压力计算模型研究[J]. 天津大学学报: 自然科学与工程技术版, 2019, 52(增刊1): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX2019S1014.htm WANG Jiang, YUAN Dajun, JIN Dalong, et al. Calculation model for loosening earth pressure of a shield tunnel based on the influence of steady seepage[J]. Journal of Tianjin University Science and Technology, 2019, 52(S1): 92-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX2019S1014.htm
[13] 刘世伟, 赵书争, 付迪, 等. 长期渗漏水条件下海陆相浅埋盾构隧道隧顶水土荷载计算[J]. 岩石力学与工程学报, 2021, 40(10): 2149-2160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110018.htm LIU Shiwei, ZHAO Shuzheng, FU Di, et al. Calculation of water and earth pressures on the top of shallow shield tunnels in marine and terrestrial sections under the condition of long-term water leakage[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2149-2160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110018.htm
[14] FERNANDEZ G, MOON J. Excavation-Induced Hydraulic Conductivity Reduction around a Tunnel - Part 1: Guideline for Estimate of Ground Water Inflow Rate[J]. Tunnelling and Underground Space Technology, 2010, 25(5): 560-566. doi: 10.1016/j.tust.2010.03.006
[15] 王将, 袁大军, 王滕, 等. 局部渗水条件下深埋盾构隧道松动土压力计算模型研究[J]. 土木工程学报, 2020, 53(增刊1): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1018.htm WANG Jiang, YUAN Dajun, WANG Teng, et al. Calculation model for loosening earth pressure of the deeply-buried shield tunnel based on the influence of partial leakage[J]. China Civil Engineering Journal, 2020, 53(S1): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1018.htm
[16] 张治国, 程志翔, 汪嘉程, 等. 考虑渗流影响的深埋隧道围岩-衬砌相互作用研究[J]. 隧道建设(中英文): 2021, 41(增刊1): 108-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2021S1014.htm ZHANG Zhiguo, CHENG Zhixiang, WANG Jiacheng, et al. Interaction between surrounding rock and lining of deep-buried tunnel considering influence of seepage[J]. Tunnel Construction: 2021, 41(S1): 108-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2021S1014.htm
[17] LEI S. An analytical solution for steady flow into a tunnel[J]. Ground Water, 1999, 37(1): 23-26.
[18] PARK K H, OWATSIRIWONG A, LEE J G. Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit[J]. Tunnelling and Underground Space Technology, 2008, 23(2): 206-209.
[19] LAVER R G, LI Z, SOGA K. Method to evaluate the long-term surface movements by tunneling in london clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(3): 06016023.
[20] 徐长节, 梁禄钜, 陈其志, 等. 考虑松动区内应力分布形式的松动土压力研究[J]. 岩土力学, 2018, 39(6): 1927-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm XU Changjie, LIANG Luju, CHEN Qizhi, et al. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone[J]. Rock and Soil Mechanics, 2018, 39(6): 1927-1934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm
[21] 应宏伟, 蒋波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 717-722. http://cge.nhri.cn/cn/article/id/12490 YING Hongwei, JIANG Bo, XIE Kanghe. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722. (in Chinese) http://cge.nhri.cn/cn/article/id/12490
[22] 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm
[23] LIN X T, CHEN R P, WU H N, et al. Three-dimensional stress-transfer mechanism and soil arching evolution induced by shield tunneling in sandy ground[J]. Tunnelling and Underground Space Technology, 2019, 93: 103104.
-
期刊类型引用(4)
1. 张平. FPSO内转塔单点吸力锚运输吊装分析. 石油和化工设备. 2025(01): 109-113 . 百度学术
2. 周闯,钱建固,尹振宇. 各向异性砂土渗流潜蚀流体动力学-离散元流固耦合分析. 岩土力学. 2024(01): 302-312 . 百度学术
3. 韩树鑫,邓学晶,李望晨,于龙,管龙飞. 吸力锚贯入引发的浅层水合物解离和储层孔隙压力再分布研究. 中国造船. 2024(03): 197-204 . 百度学术
4. 郭敏,殷鹏程,勾红叶,谭庄,梁金宝. 洪水作用下高速铁路桥梁动力响应研究. 铁道标准设计. 2024(08): 99-107 . 百度学术
其他类型引用(5)
-
其他相关附件