Acoustic emission evolution characteristics and constitutive model for damage of granite after high-temperature heating and liquid nitrogen cold shock treatment
-
摘要: 通过液氮(LN2)压裂在储层中形成大规模裂隙网络,可以有效提高干热岩储层的热能提取效率。为研究液氮冷冲击作用对不同温度储层的压裂机理和致裂效果的影响,对经过高温加热(25℃~400℃)和液氮冷冲击处理后的花岗岩试样进行单轴压缩试验,分析了花岗岩力学强度及声发射等多项参数的演化特征,并进一步构建了考虑声发射参数的损伤本构模型,用于评价和预测高温加热-液氮冷冲击处理后花岗岩的变形和强度特征。结果表明:高温和液氮冷冲击的联合作用显著劣化了花岗岩力学性能,峰值强度逐渐降低,最大降幅达到32.8%。同时随着加热温度的升高,不同矿物颗粒之间的热膨胀变形存在差异,导致矿物颗粒之间变形不协调。随着初始加热温度的升高,声发射最大b值平均值显著上升,最大增幅达到32.2%,且声发射振铃计数的初始静默阶段对应的应变量大幅度降低,最大降幅达到54.3%。随着加热温度的升高,液氮冷冲击作用使得微裂纹的生长更为密集,花岗岩在外部荷载作用下,微裂隙不断扩展贯通,更容易形成剪切变形,发生剪切破坏的起始应力水平逐渐下降,最大降幅达到62.3%,同时RA-AF散点值在剪切区域占比增加,最大增幅达到29.5%。此外,本文以声发射振铃累计计数为变量构建了考虑声发射参数的损伤本构模型,能够描述不同高温和液氮冷冲击处理后花岗岩各力学参量在变形破坏过程中的演化特征。
-
关键词:
- 花岗岩 /
- 声发射 /
- 高温加热-液氮冷冲击 /
- 损伤破坏 /
- 本构模型
Abstract: By using the liquid nitrogen (LN2) fracturing to create a massive network of fractures in the reservoir, the thermal energy extraction efficiency of hot dry rock reservoirs can be effectively improved. To investigate the effects of LN2 cold shock treatment on the fracturing mechanism and fracture effects of reservoirs at different temperatures, the uniaxial compression tests are conducted on the granite samples undergone high-temperature heating (25℃~400℃) and liquid nitrogen cold shock treatment. The evolution characteristics of the mechanical strength and acoustic emission parameters of granite are analyzed, and an acoustic emission constitutive model for damage of granite is further established to evaluate and predict the deformation and strength characteristics of granite after high-temperature heating and liquid nitrogen cold shock treatment. The results indicate that the combined effects of high-temperature heating and LN2 cold shock significantly degrade the mechanical properties of granite, with the gradual decrease in the peak strength and the maximum reduction of 32.8%. Meanwhile, with the increase in the heating temperature, there are differences in the thermal expansion deformation between different mineral particles, resulting in a lack of coordination in deformation between mineral particles. With the increase in the initial heating temperature, the average maximum b-value of acoustic emission significantly increases, with the maximum increase of 32.2%, and the strain corresponding to the initial silent stage of acoustic emission ringing counts decreases significantly, with the maximum reduction of 54.3%. With the increase in the heating temperature, the LN2 cold shock treatment causes the microcracks to grow more densely. Under the external loading, the microcracks continuously expand and penetrate, making it easier for the granite to undergo shear deformation and for the initial stress level of shear failure to gradually decrease, with the maximum reduction of 62.3%. Meanwhile, the proportion of RA-AF scatter plot values in the shear zone increases, with the maximum increase of 29.5%. Additionally, an acoustic emission constitutive model is established using the accumulated ringing counts as a variable, which can describe the evolution characteristics of different mechanical parameters of granite during the deformation and failure process after high-temperature heating and LN2 cold shock treatment. -
-
表 1 Weibull分布与拟合参数表
Table 1 Parameters for Weibull distribution and fitting
试样编号 处理措施 Weibull分布 拟合参数 m α A1 B1 C k ε0 Untreated -1 不处理 -1.78 1.22 0.7261 0.3036 -26.6 0.07659 -0.3779 Untreated-2 -1.59 1.43 0.9654 0.5638 -17.9 0.08867 -0.4738 25-1 25℃+LN2 -1.445 6.357 1.48054 0.01243 -5.88255 0.00166 0.14985 25-2 -1.636 47.82 11.41 1.194 -7.369E-06 0.04658 0.4986 100-1 100℃+LN2 -0.431 68.16 4.762E-05 2.872 -4.167E-08 0.1558 -0.01105 100-2 -0.699 59.73 4.085E-06 0.9768 -9.886E-05 0.02678 -0.0271 200-1 200℃+LN2 -1.511 26.63 0.59994 0.01529 -5.02845 0.00166 -0.01004 200-2 -1.194 47.75 0.2855 0.08134 -2.692E-08 0.003706 0.4613 300-1 300℃+LN2 -0.7796 -11.18 66.98773 0.00184 -74.97969 0.0016 -0.08416 300-2 32.54 13.49 0.6103 0.7746 -0.483 0.09329 0.2313 400-1 400℃+LN2 -1.162 37.31 1.051 0.8312 -0.4491 0.1164 0.167 400-2 -1.503 25.91 21.03 0.2642 -0.489 0.02983 0.6208 -
[1] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
[2] 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学: 中国地质大学学报, 2015(11): 1858-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm LI Dewei, WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science: Journal of China University of Geosciences, 2015(11): 1858-1869. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm
[3] 廖志杰, 万天丰, 张振国. 增强型地热系统: 潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system(EGS): huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335-344. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm
[4] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
[5] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201502001.htm ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201502001.htm
[6] BOUDET H, CLARKE C, BUGDEN D, et al. "Fracking" controversy and communication: Using national survey data to understand public perceptions of hydraulic fracturing[J]. Energy Policy, 2014, 65: 57-67. doi: 10.1016/j.enpol.2013.10.017
[7] 尹欣欣, 蒋长胜, 翟鸿宇, 等. 全球干热岩资源开发诱发地震活动和灾害风险管控[J]. 地球物理学报, 2021, 64(11): 3817-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm YIN Xinxin, JIANG Changsheng, ZHAI Hongyu, et al. Review of induced seismicity and disaster risk control in dry hot rock resource development worldwide[J]. Chinese Journal of Geophysics, 2021, 64(11): 3817-3836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm
[8] 董硕, 沙松, 蒙世仟, 等. 液氮冷却作用下三类高温岩石力学性能试验研究[J]. 东北大学学报(自然科学版), 2021, 42(11): 1591-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202111011.htm DONG Shuo, SHA Song, MENG Shiqian, et al. Experimental investigation of mechanical properties of three types of high temperature rocks after liquid nitrogen cooling[J]. Journal of Northeastern University (Natural Science), 2021, 42(11): 1591-1599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202111011.htm
[9] SU S, HOU P, GAO F, et al. Changes in mechanical properties and fracture behaviors of heated marble subjected to liquid nitrogen cooling[J]. Engineering Fracture Mechanics, 2022, 261: 108256. doi: 10.1016/j.engfracmech.2022.108256
[10] 吴星辉, 李鹏, 郭奇峰, 等. 热损伤岩石物理力学特性演化机制研究进展[J]. 工程科学学报, 2022, 44(5): 827-839. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202205001.htm WU Xinghui, LI Peng, GUO Qifeng, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock[J]. Chinese Journal of Engineering, 2022, 44(5): 827-839. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202205001.htm
[11] ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[C]// SPE/AAPG/SEG Unconventional Resources Technology Conference, OnePetro, 2013.
[12] FINNIE I, COOPER G A, BERLIE J. Fracture propagation in rock by transient cooling[C]// International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Pergamon, 1979, 16(1): 11-21.
[13] WU X G, HUANG Z W, SONG H Y, et al. Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2123-2139. doi: 10.1007/s00603-018-1727-3
[14] 蔡承政, 李根生, 黄中伟, 等. 液氮压裂中液氮对岩石破坏的影响试验[J]. 中国石油大学学报(自然科学版), 2014, 38(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201404015.htm CAI Chengzheng, LI Gensheng, HUANG Zhongwei, et al. Experimental study on effect of liquid nitrogen on rock failure during cryogenic nitrogen fracturing[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(4): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201404015.htm
[15] ZHANG S K, HUANG Z W, ZHANG H Y, et al. Experimental study of thermal-crack characteristics on hot dry rock impacted by liquid nitrogen jet[J]. Geothermics, 2018, 76: 253-260. doi: 10.1016/j.geothermics.2018.08.002
[16] 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm ZHANG Wei, QU Zhanqing, GUO Tiankui, et al. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm
[17] 黄中伟, 位江巍, 李根生, 等. 液氮冻结对岩石抗拉及抗压强度影响试验研究[J]. 岩土力学, 2016, 37(3): 694-700, 834. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm HUANG Zhongwei, WEI Jiangwei, LI Gensheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing[J]. Rock and Soil Mechanics, 2016, 37(3): 694-700, 834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm
[18] YUAN H, SUN Q, GENG J, et al. Acoustic emission characteristics of high-temperature granite through different cooling paths[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(3): 97. doi: 10.1007/s40948-022-00407-0
[19] 郭奇峰, 钱志海, 潘继良, 等. 高温花岗岩热冲击后力学特性及损伤演化规律研究[J]. 工程科学学报, 2022, 44(10): 1746-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202210012.htm GUO Qifeng, QIAN Zhihai, PAN Jiliang, et al. Mechanical properties and damage evolution of granite under high temperature thermal shock[J]. Chinese Journal of Engineering, 2022, 44(10): 1746-1754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202210012.htm
[20] SHA S, RONG G, CHEN Z H, et al. Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments[J]. Rock Mechanics and Rock Engineering, 2020, 53(11): 4967-4991. doi: 10.1007/s00603-020-02200-5
[21] GAUTAM P K, VERMA A K, SHARMA P, et al. Evolution of thermal damage threshold of jalore granite[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2949-2956. doi: 10.1007/s00603-018-1493-2
[22] 陈世万, 杨春和, 刘鹏君, 等. 热损伤后北山花岗岩裂隙演化及渗透率试验研究[J]. 岩土工程学报, 2017, 39(8): 1493-1500. doi: 10.11779/CJGE201708017 CHEN Shiwan, YANG Chunhe, LIU Pengjun, et al. Evolution of cracks and permeability of granites suffering from different thermal damages[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1493-1500. (in Chinese) doi: 10.11779/CJGE201708017
[23] 刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报, 2000, 19(4): 408-411. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004002.htm LIU Quansheng, XU Xichang. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 408-411. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004002.htm
[24] 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107014.htm JIANG Haopeng, JIANG Annan, YANG Xiurong. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification[J]. Rock and Soil Mechanics, 2021, 42(7): 1894-1902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107014.htm
[25] GUTENBERG B, RICHTER C F. Earthquake magnitude, intensity, energy, and acceleration: (Second paper)[J]. Bulletin of the Seismological Society of America, 1956, 46(2): 105-145. doi: 10.1785/BSSA0460020105
[26] LIU X, HAN M, HE W, et al. A new b value estimation method in rock acoustic emission testing[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB019658. doi: 10.1029/2020JB019658
[27] CHEN D, LIU X, HE W, et al. Effect of attenuation on amplitude distribution and b value in rock acoustic emission tests[J]. Geophysical Journal International, 2022, 229(2): 933-947. doi: 10.1093/gji/ggab480
[28] PICKERING G, BULL J M, SANDERSON D J. Sampling power-law distributions[J]. Tectonophysics, 1995, 248(1/2): 1-20.
-
期刊类型引用(4)
1. 张平. FPSO内转塔单点吸力锚运输吊装分析. 石油和化工设备. 2025(01): 109-113 . 百度学术
2. 周闯,钱建固,尹振宇. 各向异性砂土渗流潜蚀流体动力学-离散元流固耦合分析. 岩土力学. 2024(01): 302-312 . 百度学术
3. 韩树鑫,邓学晶,李望晨,于龙,管龙飞. 吸力锚贯入引发的浅层水合物解离和储层孔隙压力再分布研究. 中国造船. 2024(03): 197-204 . 百度学术
4. 郭敏,殷鹏程,勾红叶,谭庄,梁金宝. 洪水作用下高速铁路桥梁动力响应研究. 铁道标准设计. 2024(08): 99-107 . 百度学术
其他类型引用(5)
-
其他相关附件