Acoustic emission evolution characteristics and constitutive model for damage of granite after high-temperature heating and liquid nitrogen cold shock treatment
-
摘要: 通过液氮(LN2)压裂在储层中形成大规模裂隙网络,可以有效提高干热岩储层的热能提取效率。为研究液氮冷冲击作用对不同温度储层的压裂机理和致裂效果的影响,对经过高温加热(25℃~400℃)和液氮冷冲击处理后的花岗岩试样进行单轴压缩试验,分析了花岗岩力学强度及声发射等多项参数的演化特征,并进一步构建了考虑声发射参数的损伤本构模型,用于评价和预测高温加热-液氮冷冲击处理后花岗岩的变形和强度特征。结果表明:高温和液氮冷冲击的联合作用显著劣化了花岗岩力学性能,峰值强度逐渐降低,最大降幅达到32.8%。同时随着加热温度的升高,不同矿物颗粒之间的热膨胀变形存在差异,导致矿物颗粒之间变形不协调。随着初始加热温度的升高,声发射最大b值平均值显著上升,最大增幅达到32.2%,且声发射振铃计数的初始静默阶段对应的应变量大幅度降低,最大降幅达到54.3%。随着加热温度的升高,液氮冷冲击作用使得微裂纹的生长更为密集,花岗岩在外部荷载作用下,微裂隙不断扩展贯通,更容易形成剪切变形,发生剪切破坏的起始应力水平逐渐下降,最大降幅达到62.3%,同时RA-AF散点值在剪切区域占比增加,最大增幅达到29.5%。此外,本文以声发射振铃累计计数为变量构建了考虑声发射参数的损伤本构模型,能够描述不同高温和液氮冷冲击处理后花岗岩各力学参量在变形破坏过程中的演化特征。
-
关键词:
- 花岗岩 /
- 声发射 /
- 高温加热-液氮冷冲击 /
- 损伤破坏 /
- 本构模型
Abstract: By using the liquid nitrogen (LN2) fracturing to create a massive network of fractures in the reservoir, the thermal energy extraction efficiency of hot dry rock reservoirs can be effectively improved. To investigate the effects of LN2 cold shock treatment on the fracturing mechanism and fracture effects of reservoirs at different temperatures, the uniaxial compression tests are conducted on the granite samples undergone high-temperature heating (25℃~400℃) and liquid nitrogen cold shock treatment. The evolution characteristics of the mechanical strength and acoustic emission parameters of granite are analyzed, and an acoustic emission constitutive model for damage of granite is further established to evaluate and predict the deformation and strength characteristics of granite after high-temperature heating and liquid nitrogen cold shock treatment. The results indicate that the combined effects of high-temperature heating and LN2 cold shock significantly degrade the mechanical properties of granite, with the gradual decrease in the peak strength and the maximum reduction of 32.8%. Meanwhile, with the increase in the heating temperature, there are differences in the thermal expansion deformation between different mineral particles, resulting in a lack of coordination in deformation between mineral particles. With the increase in the initial heating temperature, the average maximum b-value of acoustic emission significantly increases, with the maximum increase of 32.2%, and the strain corresponding to the initial silent stage of acoustic emission ringing counts decreases significantly, with the maximum reduction of 54.3%. With the increase in the heating temperature, the LN2 cold shock treatment causes the microcracks to grow more densely. Under the external loading, the microcracks continuously expand and penetrate, making it easier for the granite to undergo shear deformation and for the initial stress level of shear failure to gradually decrease, with the maximum reduction of 62.3%. Meanwhile, the proportion of RA-AF scatter plot values in the shear zone increases, with the maximum increase of 29.5%. Additionally, an acoustic emission constitutive model is established using the accumulated ringing counts as a variable, which can describe the evolution characteristics of different mechanical parameters of granite during the deformation and failure process after high-temperature heating and LN2 cold shock treatment. -
-
表 1 Weibull分布与拟合参数表
Table 1 Parameters for Weibull distribution and fitting
试样编号 处理措施 Weibull分布 拟合参数 m α A1 B1 C k ε0 Untreated -1 不处理 -1.78 1.22 0.7261 0.3036 -26.6 0.07659 -0.3779 Untreated-2 -1.59 1.43 0.9654 0.5638 -17.9 0.08867 -0.4738 25-1 25℃+LN2 -1.445 6.357 1.48054 0.01243 -5.88255 0.00166 0.14985 25-2 -1.636 47.82 11.41 1.194 -7.369E-06 0.04658 0.4986 100-1 100℃+LN2 -0.431 68.16 4.762E-05 2.872 -4.167E-08 0.1558 -0.01105 100-2 -0.699 59.73 4.085E-06 0.9768 -9.886E-05 0.02678 -0.0271 200-1 200℃+LN2 -1.511 26.63 0.59994 0.01529 -5.02845 0.00166 -0.01004 200-2 -1.194 47.75 0.2855 0.08134 -2.692E-08 0.003706 0.4613 300-1 300℃+LN2 -0.7796 -11.18 66.98773 0.00184 -74.97969 0.0016 -0.08416 300-2 32.54 13.49 0.6103 0.7746 -0.483 0.09329 0.2313 400-1 400℃+LN2 -1.162 37.31 1.051 0.8312 -0.4491 0.1164 0.167 400-2 -1.503 25.91 21.03 0.2642 -0.489 0.02983 0.6208 -
[1] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
[2] 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学: 中国地质大学学报, 2015(11): 1858-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm LI Dewei, WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science: Journal of China University of Geosciences, 2015(11): 1858-1869. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm
[3] 廖志杰, 万天丰, 张振国. 增强型地热系统: 潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system(EGS): huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335-344. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm
[4] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
[5] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201502001.htm ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201502001.htm
[6] BOUDET H, CLARKE C, BUGDEN D, et al. "Fracking" controversy and communication: Using national survey data to understand public perceptions of hydraulic fracturing[J]. Energy Policy, 2014, 65: 57-67. doi: 10.1016/j.enpol.2013.10.017
[7] 尹欣欣, 蒋长胜, 翟鸿宇, 等. 全球干热岩资源开发诱发地震活动和灾害风险管控[J]. 地球物理学报, 2021, 64(11): 3817-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm YIN Xinxin, JIANG Changsheng, ZHAI Hongyu, et al. Review of induced seismicity and disaster risk control in dry hot rock resource development worldwide[J]. Chinese Journal of Geophysics, 2021, 64(11): 3817-3836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm
[8] 董硕, 沙松, 蒙世仟, 等. 液氮冷却作用下三类高温岩石力学性能试验研究[J]. 东北大学学报(自然科学版), 2021, 42(11): 1591-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202111011.htm DONG Shuo, SHA Song, MENG Shiqian, et al. Experimental investigation of mechanical properties of three types of high temperature rocks after liquid nitrogen cooling[J]. Journal of Northeastern University (Natural Science), 2021, 42(11): 1591-1599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202111011.htm
[9] SU S, HOU P, GAO F, et al. Changes in mechanical properties and fracture behaviors of heated marble subjected to liquid nitrogen cooling[J]. Engineering Fracture Mechanics, 2022, 261: 108256. doi: 10.1016/j.engfracmech.2022.108256
[10] 吴星辉, 李鹏, 郭奇峰, 等. 热损伤岩石物理力学特性演化机制研究进展[J]. 工程科学学报, 2022, 44(5): 827-839. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202205001.htm WU Xinghui, LI Peng, GUO Qifeng, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock[J]. Chinese Journal of Engineering, 2022, 44(5): 827-839. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202205001.htm
[11] ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[C]// SPE/AAPG/SEG Unconventional Resources Technology Conference, OnePetro, 2013.
[12] FINNIE I, COOPER G A, BERLIE J. Fracture propagation in rock by transient cooling[C]// International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Pergamon, 1979, 16(1): 11-21.
[13] WU X G, HUANG Z W, SONG H Y, et al. Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2123-2139. doi: 10.1007/s00603-018-1727-3
[14] 蔡承政, 李根生, 黄中伟, 等. 液氮压裂中液氮对岩石破坏的影响试验[J]. 中国石油大学学报(自然科学版), 2014, 38(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201404015.htm CAI Chengzheng, LI Gensheng, HUANG Zhongwei, et al. Experimental study on effect of liquid nitrogen on rock failure during cryogenic nitrogen fracturing[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(4): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201404015.htm
[15] ZHANG S K, HUANG Z W, ZHANG H Y, et al. Experimental study of thermal-crack characteristics on hot dry rock impacted by liquid nitrogen jet[J]. Geothermics, 2018, 76: 253-260. doi: 10.1016/j.geothermics.2018.08.002
[16] 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm ZHANG Wei, QU Zhanqing, GUO Tiankui, et al. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm
[17] 黄中伟, 位江巍, 李根生, 等. 液氮冻结对岩石抗拉及抗压强度影响试验研究[J]. 岩土力学, 2016, 37(3): 694-700, 834. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm HUANG Zhongwei, WEI Jiangwei, LI Gensheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing[J]. Rock and Soil Mechanics, 2016, 37(3): 694-700, 834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm
[18] YUAN H, SUN Q, GENG J, et al. Acoustic emission characteristics of high-temperature granite through different cooling paths[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(3): 97. doi: 10.1007/s40948-022-00407-0
[19] 郭奇峰, 钱志海, 潘继良, 等. 高温花岗岩热冲击后力学特性及损伤演化规律研究[J]. 工程科学学报, 2022, 44(10): 1746-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202210012.htm GUO Qifeng, QIAN Zhihai, PAN Jiliang, et al. Mechanical properties and damage evolution of granite under high temperature thermal shock[J]. Chinese Journal of Engineering, 2022, 44(10): 1746-1754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202210012.htm
[20] SHA S, RONG G, CHEN Z H, et al. Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments[J]. Rock Mechanics and Rock Engineering, 2020, 53(11): 4967-4991. doi: 10.1007/s00603-020-02200-5
[21] GAUTAM P K, VERMA A K, SHARMA P, et al. Evolution of thermal damage threshold of jalore granite[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2949-2956. doi: 10.1007/s00603-018-1493-2
[22] 陈世万, 杨春和, 刘鹏君, 等. 热损伤后北山花岗岩裂隙演化及渗透率试验研究[J]. 岩土工程学报, 2017, 39(8): 1493-1500. doi: 10.11779/CJGE201708017 CHEN Shiwan, YANG Chunhe, LIU Pengjun, et al. Evolution of cracks and permeability of granites suffering from different thermal damages[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1493-1500. (in Chinese) doi: 10.11779/CJGE201708017
[23] 刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报, 2000, 19(4): 408-411. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004002.htm LIU Quansheng, XU Xichang. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 408-411. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004002.htm
[24] 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107014.htm JIANG Haopeng, JIANG Annan, YANG Xiurong. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification[J]. Rock and Soil Mechanics, 2021, 42(7): 1894-1902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107014.htm
[25] GUTENBERG B, RICHTER C F. Earthquake magnitude, intensity, energy, and acceleration: (Second paper)[J]. Bulletin of the Seismological Society of America, 1956, 46(2): 105-145. doi: 10.1785/BSSA0460020105
[26] LIU X, HAN M, HE W, et al. A new b value estimation method in rock acoustic emission testing[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB019658. doi: 10.1029/2020JB019658
[27] CHEN D, LIU X, HE W, et al. Effect of attenuation on amplitude distribution and b value in rock acoustic emission tests[J]. Geophysical Journal International, 2022, 229(2): 933-947. doi: 10.1093/gji/ggab480
[28] PICKERING G, BULL J M, SANDERSON D J. Sampling power-law distributions[J]. Tectonophysics, 1995, 248(1/2): 1-20.
-
期刊类型引用(34)
1. 肖瑶,邓华锋,李建林,熊雨,程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果. 材料导报. 2024(01): 209-215 . 百度学术
2. 熊雨,肖瑶,邓华锋,李建林,黄叶宁,朱文羲. 海水环境下混凝土裂缝微生物改性修复研究. 应用基础与工程科学学报. 2024(01): 160-177 . 百度学术
3. 谢永晟,杨果岳,王阳,杨少光. 剪切速率对水泥胶结钙质砂强度及变形的影响. 湘潭大学学报(自然科学版). 2024(01): 83-91 . 百度学术
4. 王双娇,李志清,田怡帆,李燕明,周应新,李丹丹. 微生物岩土工程技术的过去、现在与未来. 工程地质学报. 2024(01): 236-264 . 百度学术
5. 张永杰,欧阳健,黄万东,刘涛,朱剑锋,陈剑华. 胶结液浓度对微生物固化花岗岩残积土强度特性的影响规律. 湖南大学学报(自然科学版). 2024(03): 121-129 . 百度学术
6. 陈洪运,张尧,温琪. 微生物矿化加固砂土的试验研究. 河北建筑工程学院学报. 2024(01): 8-13 . 百度学术
7. 徐洪钟,王沐婉,沐红元,米健,吴永红. 微生物诱导碳酸钙沉积加固剧烈砂化白云岩实验研究. 清华大学学报(自然科学版). 2024(07): 1168-1178 . 百度学术
8. Yingxin Zhou,Zhiqing Li,Peng Zhang,Qi Wang,Weilin Pan,Shuangjiao Wang,Xiongyao Xie. Research status, hot spots, difficulties and future development direction of microbial geoengineering. Journal of Road Engineering. 2024(02): 234-255 . 必应学术
9. 王延宁,黄龙剑,陈前,俞缙,刘士雨. MICP加固花岗岩残积土的渗透特性. 土木与环境工程学报(中英文). 2024(05): 38-46 . 百度学术
10. 林文彬,王彬,高玉朋,柯劲涛,曹生根,孔秋平. 海水环境下微生物诱导碳酸钙沉淀胶结散体状强风化花岗岩崩解试验研究. 工业建筑. 2024(09): 1-9 . 百度学术
11. 林文彬,高玉朋,罗承浩,林威,郭琼玲. 天然海水环境MICP固化硅质海砂模型试验研究. 地下空间与工程学报. 2024(06): 1960-1968+2009 . 百度学术
12. 谭慧明,赵祥运,徐烨. 豆皮脲酶诱导碳酸盐沉淀固化砂土抗风蚀性能试验研究. 防灾减灾工程学报. 2024(06): 1408-1417+1427 . 百度学术
13. 李雨杰,国振,李艺隆,芮圣洁,朱永强. 岛礁工程MICP加固技术研究进展. 工程科学学报. 2023(05): 819-832 . 百度学术
14. 王延宁,黄龙剑,李思侃,吴鸣. 一种估算MICP加固砂土体渗透系数的简便方法. 汕头大学学报(自然科学版). 2023(01): 3-12+2 . 百度学术
15. 汤佳辉,彭劼,许鹏旭,卫仁杰,李亮亮. MICP加固钙质砂的耐久性试验研究. 河北工程大学学报(自然科学版). 2023(01): 29-34 . 百度学术
16. 章君政,唐朝生,周启友,吕超,泮晓华,施斌. 基于ERT技术的微生物矿化固砂过程监测研究. 防灾减灾工程学报. 2023(02): 351-358 . 百度学术
17. 艾峰全. 不同制备工艺下微生物水泥固结不同砂质效果分析. 人民长江. 2023(06): 194-199 . 百度学术
18. 陈垚,王重卿,江世雄,罗立津,李熙,陈鸿,郑军荣,贾纬. 微生物矿化对塔基弃土的固结作用及抗降雨侵蚀效果. 科学技术与工程. 2023(34): 14713-14720 . 百度学术
19. 郑思维,胡明鉴,霍玉龙,黎宇. 盐溶液环境下钙质砂渗透性影响因素分析. 岩土力学. 2023(12): 3522-3530 . 百度学术
20. 耿闻继,陈爱青,闻艺杰,许怀华,薛润泽,朱瑞莹,韩培培. 微生物矿化技术在混凝土既有微裂缝修复中的研究进展. 水道港口. 2023(06): 938-948 . 百度学术
21. 刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 . 百度学术
22. 肖瑶,邓华锋,李建林,程雷,朱文羲. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究. 岩土力学. 2022(02): 395-404 . 百度学术
23. 王子玉,喻文晔,齐超楠,赵翔宇. 海水环境下MICP的反应机理与影响因素. 土木与环境工程学报(中英文). 2022(05): 128-135 . 百度学术
24. 许鹏旭,冷勐,彭劼,卫仁杰. 微生物与水泥固化南海珊瑚砂的强度及微观特征对比试验. 科学技术与工程. 2022(16): 6642-6649 . 百度学术
25. 曾召田,梁珍,孙凌云,付慧丽,范理云,潘斌,于海浩. 水泥胶结钙质砂导热系数的影响因素试验研究. 岩土力学. 2022(S1): 88-96 . 百度学术
26. 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究. 浙江大学学报(工学版). 2022(09): 1740-1749 . 百度学术
27. 许万强,林文彬,罗承浩,姜乃灿,高玉朋,林威,吴文葶. MICP技术研究进展及在海洋岩土工程的应用展望. 福建工程学院学报. 2022(06): 511-519 . 百度学术
28. 刘家明,童华炜,赵寄橦,袁杰. 盐溶液环境下微生物固化技术加固钙质砂的试验研究. 科学技术与工程. 2021(12): 5046-5053 . 百度学术
29. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术
30. 董博文,刘士雨,俞缙,蔡燕燕,涂兵雄. 靶向激活产脲酶微生物加固钙质砂试验研究. 岩土工程学报. 2021(07): 1315-1321 . 本站查看
31. 曾召田,付慧丽,吕海波,梁珍,于海浩. 水泥胶结钙质砂热传导特性及微观机制. 岩土工程学报. 2021(12): 2330-2338 . 本站查看
32. 唐朝生,泮晓华,吕超,董志浩,刘博,王殿龙,李昊,程瑶佳,施斌. 微生物地质工程技术及其应用. 高校地质学报. 2021(06): 625-654 . 百度学术
33. 周应征,管大为,成亮. 微生物诱导碳酸盐在土体加固中的应用进展. 高校地质学报. 2021(06): 697-706 . 百度学术
34. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 . 百度学术
其他类型引用(18)
-
其他相关附件