Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects
-
摘要: 针对柔性防护网在黏性泥石流通过时的透水效应问题,在柔性环连网等效薄膜有限单元(FEM)的基础上,结合S-ALE和Ergun公式的欧拉-拉格朗日耦合算法,提出了Structured-ALE-FEM耦合算法(简称S-A-F方法),实现了考虑透水效应的泥石流柔性防护网耦合分析。结合USGS的泥石流柔性防护模型试验,开展了泥石流柔性防护全过程动力学分析,并与试验结果进行了对比分析。研究表明:提出的耦合方法可再现泥石流冲击、爬高及渗透堆积的全过程;与试验相比,泥石流堆积高度和堆积宽度的最大误差分别为11.9%和10.3%,泥石流浆体通过量最大差量为3.2%;柔性防护网关键部件动力响应与试验相比,右侧拉锚绳、左侧拉锚绳及网片最大变形量时程曲线误差分别为3.2%,16.4%,14.4%。与不考虑阻水效应的两种理论算法相比,S-A-F方法在泥石流冲击力峰值和泥石流浆体通过量准确度较同类其他方法提升了4.69%和17.50%。提出的S-A-F耦合方法可用于黏性泥石流柔性防护工程的设计计算。Abstract: To solve the dynamic effects of blocking and permeating water under the scouring effects of mudflow on flexible protection projects, a coupled S-ALE-FEM method considering the water blocking and permeability effects of mudflow flexible protection process is established. The equivalent thin film unit of the ring network considering the water-blocking-permeability effects is established according to the Euler-Lagrange coupling algorithm based on S-ALE and Ergun formula to realize the equivalent water-blocking-permeability quantification calculation of the dense curved beam-like metal ring network mudslide protection process. The kinetic analysis of the whole process of mudflow flexible protection is carried out in conjunction with the USGS mudflow flexible protection model tests, and the results are compared with the test ones. The study shows that the proposed coupled method can reproduce the full process inversion of debris flow impact, height climbing and infiltration accumulation. Compared with those of the tests, the maximum errors of debris flow accumulation height and accumulation width are 11.9% and 10.3%, respectively, and the maximum difference of debris flow slurry passage is 3.2%. For comparison between the tests and the dynamic response of key components of the flexible protection system, the maximum time-history errors of right side anchor rope, left side anchor rope and mesh are 3.2%, 16.4% and 14.4% respectively. Compared with those of the two theoretical algorithms not considering the water blocking effects, the accuracy of the calculated results of the peak debris flow impact force and the difference of debris flow slurry passage are improved by 4.69% and 17.50%, respectively. The S-A-F coupling method can solve the design and calculation challenges of mudflow flexible protection projects.
-
Keywords:
- debris flow /
- flexible barrier /
- S-ALE /
- equivalent membrane /
- permeating water
-
-
表 1 泥石流及S-A-F耦合参数设置
Table 1 Parameter setting of debris flow and S-A-F coupling
多孔介质的当量直径Dp/m 黏聚力c/kPa 泥石流初始冲击速度/(m·s-1) 动力黏度系数 惯性阻力系数b(ρ, ε) 黏性阻力系数a(μ, ε) 网片结构初速度/(m·s-1) 0.002 1 10 0.001 1.23×107 2.10×105 0 -
[1] 朱颖彦, 潘军宇, 李朝月, 等. 中巴喀喇昆仑公路冰川泥石流[J]. 山地学报, 2022, 40(1): 71-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm ZHU Yingyan, PAN Junyu, LI Chaoyue, et al. Glacier debris flow along China-Pakistan International Karakoram Highway (KKH)[J]. Mountain Research, 2022, 40(1): 71-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm
[2] 刘波, 牛运华, 王科, 等. 乌东德水电站白滩沟泥石流特性分析与防治措施[J]. 岩土工程学报, 2016, 38(增刊1): 225-230. doi: 10.11779/CJGE2016S1042 LIU Bo, NIU Yunhua, WANG Ke, et al. Characteristic analysis and control measures for debris flow in Baitan Gully of Wudongde Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 225-230. (in Chinese) doi: 10.11779/CJGE2016S1042
[3] 刘成清, 许城杰, 陈鑫, 等. 泥石流柔性防护网结构破坏原因分析与设计对策[J]. 水利与建筑工程学报, 2017, 15(5): 6-11. LIU Chenqing, XU Chenjie, CHENG Xin, et al. Failure cause analysis and countermeasures design of flexible debris flow protection system[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(5): 6-11. (in Chinese)
[4] 肖思友, 苏立君, 姜元俊. 碎屑流冲击柔性网的离散元仿真研究[J]. 岩土工程学报, 2019, 41(3): 526-533. doi: 10.11779/CJGE201903015 XIAO Siyou, SU Lijun, JIANG Yuanjun. Numerical investigation on flexible barriers impacted by dry granular flows using DEM modeling[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 526-533(in Chinese) doi: 10.11779/CJGE201903015
[5] SZE H Y, HO K S, KOO C H, et al. Design of flexible barriers against sizeable landslides in Hong Kong[J]. HKIE Transactions Hong Kong Institution of Engineers, 2018, 25(2): 115-128.
[6] 韩玫. 汶川震区"宽缓"与"窄陡"沟道型泥石流致灾机理研究[D]. 成都: 西南交通大学, 2016. HAN Mei. Hazard Mechanism Research of Wide-Gentle and Narrow-Steep Channels Debris Flow in Wenchuan Earthquake Region[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
[7] IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296. doi: 10.1029/97RG00426
[8] WENDELER C, VOLKWEIN A. Laboratory tests for theoptimizati-onof mesh size for flexible debris-flow barriers[J]. N-at Hazard Earth Sys, 2015, 15(12): 2597-2604. doi: 10.5194/nhess-15-2597-2015
[9] ARMANINI A. On the Dynamic Impact of Debris Flows[M]. Berlin: Springer, 1997.
[10] HUNGR O, MORGAN G C, KELLERHALS R. Quantitative an-alysis of debris torrent hazards for design of remedia-lmeasures[J]. Canadian Geotechnical Journal, 2011, 21(4): 663-677.
[11] TAN D Y, YIN J H, QIN J Q, et al. Experimental s-tudy on impact and deposition behaviors of multiple surges of channelized debris flow on a flexible barrier[J]. Landslides, 2020, 17(7): 1577-1589. doi: 10.1007/s10346-020-01378-7
[12] DENATALE J S, IVERSON R M, MAJOR J J, et al. Experimental Testing of Flexible Barriers for Containment of Debris Flows[M]. Reston: US Department of the Interior, US Geological Survey, 1999.
[13] LIU C, YU Z X, ZHAO S C. Quantifying the impac-t of a debris avalanche against a flexible barrier by coupled DEM-FEM analyses[J]. Landslides, 2020, 17(1): 33-47. doi: 10.1007/s10346-019-01267-8
[14] LIU C, YU Z X, ZHAO S C. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation[J]. Landslides, 2021, 18(7): 2403-2425. doi: 10.1007/s10346-021-01640-6
[15] 柳春. 柔性防护结构坡面地质灾害作用的离散化分析理论与方法[D]. 成都: 西南交通大学, 2020. LIU Chun. Theory and Method of Discrete analysis for Flexible Protective Structure against Geological Hazard on Shallow Slope[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
[16] 王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm WANG Mingzhen, CAO Dongfeng, WU Bin, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method[J]. Journal of Chongqing University, 2020, 43(6): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm
[17] 汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123. doi: 10.6052/0459-1879-21-217 WANG Chunhui, WANG Jia'an, WANG Chao, et al. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. (in Chinese) doi: 10.6052/0459-1879-21-217
[18] JIN Y T, YU Z X, LUO L R, et al. A membrane e-quivalent method to reproduce the macroscopic mechanical responses of steel wire-ring nets under rockfall impact[J]. Thin-walled Structures, 2021, 167: 108227.
[19] 贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm JIA He, RONG Wei, CHENG Guoliang. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery and Remote Sensing, 2009, 30(1): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm
[20] AQUELET N, WANG J. Porous parachute modelling with an Euler-Lagrange coupling[J]. European Journal of Computational Mechanics, 2007, 16(3/4): 385-399.
[21] HALLGUIST J O. LS-DYNA–3D Theoretical Manual[M]. Pittsburgh: Livermore Software Technology Co., 1991: 1-11.
[22] ZHAO L, YU Z X, HE J W, et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides, 2020, 17(12): 2723-2736.
[23] USGS Debris Flow Impact on Cable Net Mostly Satura-ted Sand/Gravel Mix[DB/OL]. https://pubs.usgs.gov/of/2007/1315/videos/1996/06-25-1996.mp4,1996-06-25/2023-09-06.
[24] TAN D Y, YIN J H, FENG W Q, et al. New Simpl-e Method for calculating impact force on flexible b-arrier considering partial muddy debris flow passing through[J]. Journal of Geotechnical and G-eoenvironmental Engineering, 2019, 145(9).
-
其他相关附件