• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

真空作用下高含水率疏浚泥颗粒迁移规律试验研究

曾玲玲, 王其忠, 林晓鑫

曾玲玲, 王其忠, 林晓鑫. 真空作用下高含水率疏浚泥颗粒迁移规律试验研究[J]. 岩土工程学报, 2024, 46(8): 1776-1782. DOI: 10.11779/CJGE20230510
引用本文: 曾玲玲, 王其忠, 林晓鑫. 真空作用下高含水率疏浚泥颗粒迁移规律试验研究[J]. 岩土工程学报, 2024, 46(8): 1776-1782. DOI: 10.11779/CJGE20230510
ZENG Lingling, WANG Qizhong, LIN Xiaoxin. Experimental investigation on particle migration behaviour of dredged clays with high initial water contents under vacuum pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1776-1782. DOI: 10.11779/CJGE20230510
Citation: ZENG Lingling, WANG Qizhong, LIN Xiaoxin. Experimental investigation on particle migration behaviour of dredged clays with high initial water contents under vacuum pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1776-1782. DOI: 10.11779/CJGE20230510

真空作用下高含水率疏浚泥颗粒迁移规律试验研究  English Version

基金项目: 

国家自然科学基金项目 52178361

江苏省南水北调科技研发项目 JSNSBD202205

详细信息
    作者简介:

    曾玲玲(1983—),女,博士,教授,从事疏浚泥物理-力学性状与内陆堆场处理技术、天然沉积土结构损伤理论与地基处理技术、污染底泥物理-化学-力学性状与资源化处理技术方面的研究工作。E-mail: linglz413@126.com

  • 中图分类号: TU411

Experimental investigation on particle migration behaviour of dredged clays with high initial water contents under vacuum pressure

  • 摘要: 研制了高含水率疏浚泥真空固结模型装置,针对两种具有不同液限的疏浚泥,开展不同初始状态下的真空固结试验,探究真空作用下疏浚泥初始状态对细颗粒迁移性状的影响规律。研究结果表明,引入初始含水率与液限比值作为无量纲化的初始状态指标,能够作为确定细颗粒迁移与否的一个临界阈值。当初始含水率与液限比值不大于临界阈值,真空作用下高含水率疏浚泥没有发生颗粒迁移;当初始含水率与液限比值大于临界阈值,真空作用下高含水率疏浚泥发生颗粒迁移,黏粒向排水面附近聚集。一旦发生颗粒迁移,黏粒向排水面附近富集的程度随着初始含水率与液限比值的增大而愈发显著。
    Abstract: A vacuum consolidation model equipment is designed for performing a series of vacuum consolidation tests on two dredged clays with different liquid limits reconstituted at different initial water contents. The experimental results indicate that the ratio of the initial water content to the liquid limit is a useful dimensionless index for describing the behaviour of fine particle migration of dredged clays under vacuum pressure. It is found that there is a unique critical value of the ratio of the initial water content to the liquid limit for the occurrence of particle migration. When the ratio of the initial water content to the liquid limit is less than the critical value, the particle migration of dredged clays does not occur under vacuum pressure. But in the case that the ratio of the initial water content to the liquid limit is larger than the critical value, the particles of dredged clays migrate to the drainage surface, resulting in the enrichment of clay particles in the vicinity of the drainages. The level of clay particles enrichment increases with the increase in the ratio of the initial water content to the liquid limit.
  • 劲性水泥搅拌桩(SDCM column)也称“混凝土芯搅拌桩”,是一种由水泥搅拌桩(DCM column)壳和中心处较小面积预制混凝土芯桩组成的复合材料桩。按照芯桩与DCM桩壳二者长度间的相对关系,SDCM桩分为3种类型:芯桩长度小于DCM桩壳长度的短芯SDCM桩、芯桩长度等于DCM桩壳长度的等芯SDCM桩和芯桩长度大于DCM桩壳长度的长芯SDCM桩。较之传统的DCM桩,SDCM桩的竖向和水平向承载力高,沉降控制效果好。它既可作为桩基础,也可作为复合地基的竖向增强体,在国内外都得到了大量应用[1-2]

    很多学者通过室内外试验和数值模拟等方法,从承载力、荷载传递机制和控沉效果等方面对短芯SDCM桩和短芯SDCM桩复合地基进行了较为系统的研究。凌光荣等[3]、董平等[4]和吴迈等[5]通过现场单桩载荷试验研究了SDCM桩的轴向承载特性。试验发现,芯桩的插入使搅拌桩桩侧摩阻力充分发挥,SDCM桩的竖向承载力可高于混凝土灌注桩。Voottipruex等[6]采用三维有限元法研究了芯桩长度和截面积等因素对SDCM桩竖向和水平向承载力、芯桩轴力和弯矩分布的影响。吴迈等[7]、丁永君等[8]和顾士坦等[9]采用理论分析和现场实测芯桩桩身应力的方法研究了SDCM桩的荷载传递特性。Wonglert等[10-11]基于室内模型试验成果,提出短芯SDCM桩有土体破坏、芯桩底部破坏和搅拌桩壳顶部破坏3种破坏模式,研究了芯桩长度和搅拌桩壳强度对悬浮SDCM桩竖向承载力和破坏模式的影响。Wang等[12]通过现场荷载板试验,比较了刚性基础下SDCM桩复合地基与DCM桩复合地基的竖向承载力。Voottipruex等[13]和Wang等[14]进行了路堤下SDCM桩复合地基现场试验,比较了柔性基础下SDCM桩复合地基与DCM桩复合地基的沉降控制效果。叶观宝等[15-16]提出了悬浮SDCM桩复合地基桩-土应力比和沉降的计算方法。杨涛等[17]建立了端承短芯SDCM桩复合地基的固结计算模型。

    近年来,随着长芯SDCM桩在中国的逐渐应用,其承载机理和设计理论的研究开始受到学术界的关注。陈华顺等[18]和程博华[19]分别提出了长芯SDCM桩桩侧摩阻力和竖向承载力的计算方法。杨涛等[20]给出了端承长芯SDCM桩复合地基固结解析解,但该解答无法用于分析悬浮长芯SDCM桩复合地基的固结问题。有鉴于此,本文研究悬浮长芯SDCM桩复合地基的固结计算方法,分析悬浮长芯SDCM桩复合地基的固结特性,进一步完善SDCM桩复合地基的固结计算理论。

    图1给出悬浮长芯SDCM桩复合地基轴对称固结模型,rz分别是径向和竖向坐标。re为一根SDCM桩的影响区半径,可由桩的间距和布桩方式计算得到。水泥搅拌桩壳外半径和长度分别为rpLp=H1,上部SDCM桩的置换率为mm=(rp/re)2),压缩模量为Ep。芯桩打穿水泥搅拌桩壳,其半径和长度分别为rspLspLsp=H1+H2),压缩模量为Esp。芯桩的截面含芯率为ρρ=(rsp/rp)2)。根据水泥搅拌桩壳和芯桩的长度将复合地基加固区分为Ⅰ和Ⅱ二部分,加固区Ⅰ内桩间土的厚度、渗透系数、固结系数和压缩模量分别为H1,kv1,cv1,Es1,加固区Ⅱ内桩间土的厚度、渗透系数、固结系数和压缩模量分别为H2,kv2,cv2,Es2。下卧层土厚度、渗透系数、固结系数和压缩模量分别为H3,kv3,cv3,Es3。复合地基总厚度H= H1+H2+H3

    图  1  复合地基固结模型
    Figure  1.  Consolidation model for composite ground

    本文公式推导采用如下假定:①地基土完全饱和,水的流动符合Darcy定律;②搅拌桩壳不排水;③芯桩桩端以下的下卧层土和搅拌桩壳以下芯桩桩端以上的土仅发生径向渗流;④芯桩与搅拌桩壳间无相对滑移,加固区中任意深度处的桩和土的竖向应变相等;⑤大面积均布荷载p瞬时施加,在待加固地基中引起的竖向附加应力沿深度均布;⑥土的渗透系数和压缩模量不随固结而变化。

    基于前述基本假定,参考杨涛等[20-21]的研究,可得到荷载p瞬时施加情况下悬浮长芯SDCM桩复合地基得固结方程如下:

    {ˉus1t=cv1e2ˉus1z2(0z<H1) ,ˉus2t=cv2e2ˉus2z2(H1z<H1+H2) ,ˉus3t=cv3e2ˉus3z2(H1+H2zH)  (1)
    cv1e=(1+m[ρEsp+(1ρ)Ep](1m)Es1)cv1, (2)
    cv2e=(1+mρEsp(1mρ)Es2)(1m1mρ)cv2, (3)
    cv3e=(1mρ)cv3   (4)

    式中ˉus1,ˉus2,ˉus3分别为加固区Ⅰ、Ⅱ中桩间土和下卧层土中任意深度z处的平均超静孔隙水压力;cv1e,cv2e,cv3e分别为考虑劲性桩和芯桩影响的加固区Ⅰ、Ⅱ中桩间土和下卧层土的等效竖向固结系数。

    (1)边界条件

    考虑复合地基上边界排水、下边界不排水的单面排水情况,边界条件如下:

    z=0,ˉus1=0, (5)
    z=H,ˉus3z=0 (6)

    (2)孔压和水流连续性条件

    考虑到(1m)ˉus1(1mρ)ˉus2分别为加固区Ⅰ和加固区Ⅱ内任意深度处的平均孔压,可得加固区Ⅰ与加固区Ⅱ分界面处、加固区Ⅱ与下卧层分界面处孔压和水流连续性条件如下:

    z=H1时,

    (1m)ˉus1=(1mρ)ˉus2, (7)
    (1m)kv1ˉus1z=(1mρ)kv2ˉus2z (8)

    z=H1+H2时,

    (1mρ)ˉus2=ˉus3, (9)
    (1mρ)kv2ˉus2z=kv3ˉus3z (10)

    (3)初始条件

    荷载施加的瞬时,桩间土和下卧层土中没有竖向变形。参照杨涛等[20-21]的研究,容易写出如下初始条件:

    ˉus1(z,0)=p1m, (11)
    ˉus2(z,0)=p1mρ, (12)
    ˉus3(z,0)=p (13)

    为便于求解,进行如下函数变换:

    {ˆus1=(1m)ˉus1 ,ˆus2=(1mρ)ˉus2 ,ˆus3=ˉus3  (14)

    显然,ˆus1ˆus2分别是复合地基上、下加固区任意深度处的平均超静孔隙水压力。将式(14)代入固结控制方程式(1)和定解条件式(5)~(13),则变换后的复合地基固结控制方程和求解条件如下:

    {ˆus1t=cv1e2ˆus1z2(0z<H1) ,ˆus2t=cv2e2ˆus2z2(H1z<H1+H2) ,ˆus3t=cv3e2ˆus3z2(H1+H2zH)  (15)
    z=0ˆus1=0, (16)
    z=Hˆus3z=0, (17)

    z=H1,

    {ˆus1=ˆus2kv1ˆus1z=kv2ˆus2z, (18)

    z=H1+H2,

    {ˆus2=ˆus3kv2ˆus2z=kv3ˆus3z, (19)
    ˆus1(z,0)=ˆus2(z,0)=ˆus3(z,0)=p (20)

    显然,式(15),(16)~(20)分别是瞬时荷载p作用在由复合地基上、下加固区复合土和下卧层土组成的三层土系统固结问题的固结方程和定解条件。与瞬时荷载p作用下的三层天然地基固结问题相比,只是各层天然地基土的固结系数cv1,cv2cv3分别被cv1e,cv2ecv3e代替而已。设三层土系统中土层i的渗透系数为kvi(i=1,2,3),则其压缩模量为Esie=cvierw/kvi (i=1,2,3)。

    为使计算公式得以简化,定义5个无量纲参数:

    ai=kvikv1;bi=Es1eEsie;ci=HiH1;μi=biai(i=1,2,3)di=ai1bi1aibi                                (i=2,3)} (21)

    根据谢康和[22]的研究,容易得到:

    (1)各加固区和下卧层的平均超静孔压

    {ˆus1(z,t)=pm=1Cmsin(λmzH1)eλ2mTv1e ,ˆus2(z,t)=pm=1Cm[sin(λm)cos(μ2λmzH1H1)+               d2cos(λm)sin(μ2λmzH1H1)]eλ2mTv1e ,ˆus3(z,t)=pm=1CmAmcos(μ3c3λm)cos(μ3λmHzH1)eλ2mTv1e , (22)
    Tv1e=cv1et/H21 (23)

    (2)桩间土和下卧层土的平均孔压

    将式(14)代入式(22),可得悬浮长芯SDCM桩复合地基上、下部加固区中桩间土和下卧层土平均超静孔隙水压力:

    {ˉus1(z,t)=p1mm=1Cmsin(λmzH1)eλ2mTv1e ,ˉus2(z,t)=p1-mρm=1Cm[sin(λm)cos(μ2λmzH1H1)+d2cos(λm)sin(μ2λmzH1H1)]eλ2mTv1e ,ˉus3(z,t)=pm=1CmAmcos(μ3c3λm)cos(μ3λmHzH1)eλ2mTv1e , (24)
    Cm=2d2sin(2μ3c3λm)λm[sin(2μ3c3λm)(d2+μ2c2Fm)μ3c3Dm], (25)
    Am=sin(λm)cos(μ2c2λm)+d2cos(λm)sin(μ2c2λm), (26)
    Dm=sin(2μ2c2λm)Emd2sin(2λm)cos(μ2c2λm), (27)
    Em=sin2(λm)d22cos2(λm), (28)
    Fm=sin2(λm)+d22cos2(λm) (29)

    按下面方程求解出特征值λm

    Am+d3cot(μ3c3λm)Bm=0, (30)
    Bm=sin(λm)sin(μ2c2λm)d2cos(λm)cos(μ2c2λm) (31)

    (3)复合地基整体平均固结度

    参考谢康和[22]的研究,容易得到悬浮长芯SDCM桩复合地基按沉降定义和按孔压定义的整体平均固结度UsUp的计算公式:

    Us=1m=1Cmλm(1+b2c2+b3c3)eλ2mTv1e, (32)
    Up=1m=1a2b2Bm(b3b2)+b2b3+(b3b2b3)cos(λm)λmb2c3(1+c2+c3)Cmeλ2mTv1e (33)

    算例中,H=20 m,re=1.1 m;芯桩:rsp=0.175 m,Lsp= H1+ H2=12 m,Esp=20 GPa,泊松比μsp=0.17。搅拌桩壳:rp=0.35 m,Lp=H1=8 m,Ep=150 MPa,泊松比μp=0.25。地基土:H3=8 m,Es1=Es2=3 MPa,Es3=9 MPa,kv1=kv2=kv3=10-8 m/s,泊松比μs=0.35。为了在数值计算中近似模拟等应变条件,在复合地基表面铺设0.5 m厚的混凝土板,板上荷载p=68 kPa瞬时施加。混凝土板压缩模量和泊松比与芯桩相同。地基土、芯桩、搅拌桩壳和混凝土板均采用线弹性模型。在各材料的弹性模量E和压缩模量E1之间按E= (1+ μ)(1-2μ)E1/(1-μ)近似换算,μ为泊松比。图2为悬浮长芯SDCM桩复合地基轴对称有限元模型。模型左、右侧边界上约束径向位移,不排水。模型底边界上径向和竖向均约束,不排水。复合地基表面自由,排水。

    图  2  有限元模型
    Figure  2.  FEM model

    采用ABAQUS有限元软件进行算例固结分析。混凝土板、芯桩和搅拌桩壳采用4结点四边形单元(CAX4)剖分,桩间土采用应力-孔压耦合4结点四边形单元(CAX4P)剖分。芯桩-土交界处设置摩擦接触对,摩擦系数取0.42。模型共剖分2466个单元,结点总数2742个。

    图3给出本文解析解计算的悬浮长芯SDCM桩复合地基整体平均固结度(Us)曲线与有限元计算结果的比较,时间轴采用无量纲时间因数Tu=cv1t/H2图3表明,本文解析解与有限元计算结果较为接近,解析解数值略大于数值解,二者差值最大不超过3.0%。计算表明,解析解有较高的计算精度。

    图  3  解析解和有限元解的比较
    Figure  3.  Comparison between analytical results and FEM results

    采用的几何和力学参数基准值如下:H=20 m,H1=10 m,H2=5 m,H3=5 m。m=0.1,ρ=0.25。Ep=150 MPa,Esp=20 GPa。Es1=Es2=3 MPa,Es3=9 MPa。kv1=kv2=kv3=10-8 m/s。

    (1)桩的贯入比的影响

    图4给出长芯SDCM桩贯入比β=Lsp/H的变化对复合地基固结速率的影响,计算时地基土为均质土,Es3=3 MPa,搅拌桩壳长度与芯桩长度的比值β1=Lp/ Lsp=0.67保持不变。图4表明,复合地基的固结速率随着长芯SDCM桩贯入比的增加逐渐增大,当β>0.75以后,复合地基固结速率的增加率显著增大。

    图  4  β对固结速率的影响
    Figure  4.  Influences of β on consolidation rate

    (2)搅拌桩壳的刚度和几何尺寸的影响

    图57分别给出上部SDCM桩置换率m、搅拌桩壳长度与芯桩长度之比β1=Lp/Lsp和搅拌桩壳压缩模量Ep的变化对复合地基固结速率的影响。在图5固结度曲线计算中,芯桩截面积保持不变,即miρi=mρ=0.025,m越大表示搅拌桩壳的厚度越大。图57计算结果表明,搅拌桩壳的厚度、长度和压缩模量的变化对悬浮长芯SDCM桩复合地基的固结速率没有影响。

    图  5   m对固结速率的影响
    Figure  5.  Influences of m on consolidation rate
    图  6  β1对固结速率的影响
    Figure  6.  Influences of β1 on consolidation rate
    图  7  Ep对固结速率的影响
    Figure  7.  Influences of Ep on consolidation rate

    (3)芯桩刚度和含心率的影响

    图8,9分别给出芯桩的截面含芯率ρ和压缩模量Esp的变化对复合地基固结速率的影响。图8表明,芯桩含芯率ρ的变化对悬浮长芯SDCM桩复合地基固结速率近乎没有影响。当含芯率ρ增大时,仅在固结前期复合地基的固结速率会略微减小,但降幅非常小,可以忽略不计。从图9中可见,芯桩压缩模量Esp的变化对悬浮长芯SDCM桩复合地基前期的固结速率有一定影响。随着Esp数值的增加,前期复合地基固结速率随之减小,但降幅并不大。总的来看,芯桩刚度的变化对复合地基固结速率的影响不大。

    图  8  ρ对固结速率的影响
    Figure  8.  Influence of ρ on the consolidation rate
    图  9  Esp对固结速率的影响
    Figure  9.  Influences of Esp on consolidation rate

    (4)下卧层土体刚度的影响

    图10给出下卧层土压缩模量Es3取不同数值情况下悬浮长芯SDCM桩复合地基的Us-Tu曲线。图10表明,复合地基的固结速率随下卧层土刚度的增加而增大。这说明,将芯桩的桩端置于承载力较大的持力层上可加速复合地基的固结。

    图  10  Es3对固结速率的影响
    Figure  10.  Influences of Es3 on consolidation rate

    (1)本文固结解析解是基于加固区等竖向应变假定获得的,因此,它更适用于刚性基础下悬浮长芯SDCM桩复合地基的固结分析。

    (2)桩的贯入比和下卧层土的刚度是影响悬浮长芯SDCM桩复合地基固结快慢的主要因素。桩的贯入比和下卧层土的压缩模量越大,悬浮长芯SDCM桩复合地基的固结越快。

    (3)芯桩截面含芯率的变化不会影响悬浮长芯SDCM桩复合地基的固结速率。芯桩刚度的增加会略微减小固结前期复合地基的固结速率,对后期复合地基的固结速率没有影响。

    (4)搅拌桩壳的厚度、长度和刚度的变化对悬浮长芯SDCM桩复合地基的固结速率没有影响。

  • 图  1   高含水率疏浚泥真空固结模型试验装置示意图

    Figure  1.   Schematic plot of vacuum consolidation model

    图  2   土样塑性图

    Figure  2.   Placticity chart of clay samples

    图  3   温州疏浚泥真空加载后试样上、下部分颗分曲线

    Figure  3.   Particle segregation behaviour of Wenzhou clay under vacuum pressure

    图  4   旗山湖疏浚泥真空加载试样上、下部分颗分曲线

    Figure  4.   Particle migration behaviour of Qishanhu clay under vacuum pressure

    图  5   温州疏浚泥不同部位各粒组含量分布

    Figure  5.   Change of grain size with initial state for Wenzhou clay

    图  6   旗山湖疏浚泥不同部位各粒组含量分布

    Figure  6.   Change of grain size with initial state for Qishanhu clay

    图  7   等效不均匀系数随着w0/wL的变化

    Figure  7.   Change of nonuniformity coefficient with initial state

    图  8   试样上部和下部黏粒含量的比值

    Figure  8.   Ratios of upper to lower particles of clay samples

    图  9   试样上部和下部等效不均匀系数的比值

    Figure  9.   Ratios of upper to lower nonuniformity coefficients of clay samples

    表  1   疏浚泥真空固结试验方案

    Table  1   Test programs for investigated clays

    旗山湖疏浚泥 温州疏浚泥
    wL/% w0/% w0/wL wL/% w0/% w0/wL
    35.6 53.40 1.50 64.3 129.10 2.01
    35.6 72.30 2.03 64.3 161.36 2.51
    35.6 89.42 2.51 64.3 191.40 2.98
    35.6 107.00 3.00 64.3 258.51 4.02
    35.6 141.97 3.99
    下载: 导出CSV
  • [1] 黄华梅, 高杨, 王银霞, 等. 疏浚泥用于滨海湿地生态工程现状及在中国应用潜力[J]. 生态学报, 2012, 32(8): 2571-2580. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201208031.htm

    HUANG Huamei, GAO Yang, WANG Yinxia, et al. Review of the current situation of coastal ecological engineering using dredged marine sediments and prospects for potential application in China[J]. Acta Ecologica Sinica, 2012, 32(8): 2571-2580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201208031.htm

    [2] 董志良, 刘嘉, 朱幸科, 等. 大面积围海造陆围堰工程关键技术研究及应用[J]. 水运工程, 2015(2): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201502008.htm

    DONG Zhiliang, LIU Jia, ZHU Xingke, et al, et al. Key technology research and application of cofferdam construction in large-area reclamation project[J]. Port & Waterway Engineering, 2015(2): 9-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201502008.htm

    [3] 尚金瑞. 围海造陆填土与地基处理技术及其应用研究[D]. 青岛: 中国海洋大学, 2015.

    SHANG Jinrui. Filling and Ground Treatment Technologies of Land Reclamation and Their Applications[D]. Qingdao: Ocean University of China, 2015. (in Chinese)

    [4] 韩明, 刘厚恕. 浅述中国疏浚工业的发展道路[J]. 船舶, 2002, 13(2): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200202000.htm

    HAN Ming, LIU Houshu. On the development of China's dredging industry[J]. Ship & Boat, 2002, 13 (2): 6-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200202000.htm

    [5] 牟聪. 低应力下高含水率疏浚黏土固结性状试验研究[D]. 南京: 东南大学, 2019.

    MOU Cong. Experimental Investigation of Consolidation Behaviour for Dredged Clays with High Water Contents under Low Stress Levels[D]. Nanjing: Southeast University, 2019. (in Chinese)

    [6]

    CARRIER W D, BROMWELL L G, SOMOGYI F. Design capacity of slurried mineral waste ponds[J]. Journal of Geotechnical Engineering, 1983, 20(5): 154-155.

    [7]

    KJELLMAN W. Consolidation of clay soil by means of atmospheric pressure[C]// Pro Conference on Soil Stabilization. Boston, 1952.

    [8] 龚晓南, 岑仰润. 真空预压加固软土地基机理探讨[J]. 哈尔滨建筑大学学报, 2002, 35(2): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ200202001.htm

    GONG Xiaonan, CEN Yangrun. Mechanism of vacuum preloading[J]. Journal of Harbin University of Civil Engineering and Architecture, 2002, 35(2): 7-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ200202001.htm

    [9] 陈平山, 董志良, 张功新. 新吹填淤泥浅表层加固中"土桩"形成机理及数值分析[J]. 水运工程, 2015(2): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201502020.htm

    CHEN Pingshan, DONG Zhiliang, ZHANG Gongxin. Mechanism and numerical simulation of the "soil piles" in the fresh hydraulic mud fill treated by surface-layer improvement technique[J]. Port & Waterway Engineering, 2015(2): 88-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201502020.htm

    [10] 邓东升, 洪振舜, 刘传俊, 等. 低浓度疏浚淤泥透气真空泥水分离模型试验研究[J]. 岩土工程学报, 2009, 31(2): 250-253. http://cge.nhri.cn/cn/article/id/13145

    DENG Dongsheng, HONG Zhenshun, LIU Chuanjun, et al. Large-scale model tests on dewater of dredged clay by use of ventilating vacuum method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 250-253. (in Chinese) http://cge.nhri.cn/cn/article/id/13145

    [11]

    NAGARAJ T S, SRIASA MURTHY B R. A critical reappraisal of compression index equation[J]. Géotechnique, 1986, 36(1): 27-32.

    [12]

    LOCAT J, DEMERS D. Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays[J]. Canadian Geotechnical Journal, 1988, 25(4): 799-806.

  • 期刊类型引用(1)

    1. 朱庆华,朱志慧,左威龙,费康. 劲性搅拌桩复合地基承载特性数值分析. 河南理工大学学报(自然科学版). 2022(01): 181-188 . 百度学术

    其他类型引用(10)

图(9)  /  表(1)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  32
  • PDF下载量:  67
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-06-04
  • 网络出版日期:  2024-08-11
  • 刊出日期:  2024-07-31

目录

/

返回文章
返回