• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂卵石地层泥水盾构排浆管路渣石起动特性模型试验与仿真分析

孙宇, 李兴高, 郭易东, 刘泓志

孙宇, 李兴高, 郭易东, 刘泓志. 砂卵石地层泥水盾构排浆管路渣石起动特性模型试验与仿真分析[J]. 岩土工程学报, 2024, 46(9): 1945-1955. DOI: 10.11779/CJGE20230459
引用本文: 孙宇, 李兴高, 郭易东, 刘泓志. 砂卵石地层泥水盾构排浆管路渣石起动特性模型试验与仿真分析[J]. 岩土工程学报, 2024, 46(9): 1945-1955. DOI: 10.11779/CJGE20230459
SUN Yu, LI Xinggao, GUO Yidong, LIU Hongzhi. Model tests and simulation analyses of starting characteristics of muck in slurry-discharge pipelines of slurry shield in sandy pebble stratum[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1945-1955. DOI: 10.11779/CJGE20230459
Citation: SUN Yu, LI Xinggao, GUO Yidong, LIU Hongzhi. Model tests and simulation analyses of starting characteristics of muck in slurry-discharge pipelines of slurry shield in sandy pebble stratum[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1945-1955. DOI: 10.11779/CJGE20230459

砂卵石地层泥水盾构排浆管路渣石起动特性模型试验与仿真分析  English Version

基金项目: 

国家自然科学基金项目 52278386

详细信息
    作者简介:

    孙宇(1997—),男,主要从事盾构隧道施工方面的研究工作。E-mail: 20121102@bjtu.edu.cn

    通讯作者:

    李兴高, E-mail: lxg_njtu@163.com

  • 中图分类号: TU432

Model tests and simulation analyses of starting characteristics of muck in slurry-discharge pipelines of slurry shield in sandy pebble stratum

  • 摘要: 泥水盾构在砂卵石地层掘进的过程中,由于排浆管路中存在大量不规则卵石,排浆管路输送尤为复杂。设计了环流试验装置,并基于计算流体动力学与离散单元法(CFD-DEM)耦合方法建立了三维瞬态数值模型,对不同形状、粒径、管路倾角、弯头及管径下的卵石起动特性进行了探究。在模型试验中,羧甲基纤维素钠(CMC)浆液被选为载液,透明亚克力管被选为载体;在CFD-DEM耦合模型中,分别通过流变测试和三维扫描技术考虑了浆液的流变性和不规则卵石的形状。结果表明:①当异形卵石粒径和管路倾角相同时,卵石的起动速度大小顺序呈现椭球状>扁平状>近球状;②当异形卵石形状和管路倾角时,卵石的起动速度随等容粒径的增大先增大后减小再增大;③对于球形卵石,在水平管路中,卵石的起动速度随粒径的增大先增大后减小再增大,在倾斜和竖直管路中,卵石的起动速度随粒径的增大而减小;④卵石的起动速度随管径的增大而增大;⑤卵石起动速度较大的位置主要出现在较大角度(如60°,90°)的弯头位置处,这是因为当管路倾角≥60°时,在弯头位置处将会出现漩涡区,漩涡区流速与主流区流速相反,阻碍卵石运动,因此在铺设管路时,应尽量减少倾斜角度较大(≥60°)管路的铺设,多采用水平管路或倾斜角度较小(≤45°)的管路。
    Abstract:
    During the excavation process of slurry shield tunneling in sandy pebble stratum, the discharge pipeline transport is particularly complex due to a large number of irregular pebbles in the slurry-discharge pipelines. In this study, a circulating current test device is designed, and a three-dimensional transient numerical model is established using the computational fluid dynamics-discrete element method (CFD-DEM) coupling method. The start-up characteristics of the pebbles under different shapes, particle sizes, inclination angles of pipelines, elbow and pipeline diameters are investigated, respectively. In the model tests, the sodium carboxymethyl cellulose (CMC) slurry is used as the carrier liquid, and the transparent acrylic tube is used as the carrier. In the CFD-DEM coupling model, the rheological properties of slurry and the shape of irregular pebbles are considered through the rheological testing and three-dimensional scanning technology, respectively. The results indicated that: (1) Under the same particle size of irregular pebbles and inclination angle of pipelines, the starting velocity of the pebbles follows an order of ellipsoidal shape > flat shape > nearly spherical shapes; (2) Under the same shape of irregular pebbles and inclination angle of pipelines, the starting velocity of pebbles first increases, then decreases, and then increases with the increase of the isometric particle size. (3) For the spherical pebbles, in a horizontal pipeline, the starting velocity of the pebbles first increases, then decreases, and then increases with the increase of the particle size. In the inclined and vertical pipelines, the starting velocity of the pebbles decreases with the increase of the particle size. (4) The starting velocity of the pebbles increases with the increase of the pipe line diameter. (5) The positions with higher starting velocity of pebbles mainly appear at the elbow positions with larger angles (such as 60°and 90°). This is because when the inclination angle of pipelines is≥60°, a vortex zone will appear at the elbow position. The velocity in the vortex zone is opposite to the velocity in the mainstream zone, which hinders the movement of the pebbles. Therefore, when laying pipelines, it is necessary to minimize the laying of large-angle-inclined and vertical pipelines as much as possible, and it is recommended to use more horizontal pipelines or pipelines with small inclination angles (≤45°).
  • 图  1   卵石三轴视图

    Figure  1.   Triaxial view of pebble

    图  2   模型试验中使用的卵石

    Figure  2.   Pebbles used in the model test

    图  3   初次试验装置(管径150 mm)

    Figure  3.   Initial testing devices (pipe diameter 150 mm)

    图  4   二次试验装置(管径100 mm)

    Figure  4.   Secondary testing devices (pipe diameter 100 mm)

    图  5   CMC溶液流变特性曲线

    Figure  5.   Rheological characteristic curves of CMC solution

    图  6   不同管路倾角下,卵石起动速度随形状系数变化图(模型试验结果,D=150 mm)

    Figure  6.   Change of starting speed of pebble with shape coefficient under different pipe inclination angles

    图  7   不同形状卵石仿真模型

    Figure  7.   Simulation model for pebbles with different shapes

    图  8   不同形状卵石运动速度随时间变化曲线图

    Figure  8.   Curves of movement speed of pebble with different shapes with time

    图  9   不同形状卵石起动速度试验结果与数值模拟结果对比(D=150 mm)

    Figure  9.   Comparison between test and numerical results of starting speed of pebbles with different shapes

    图  10   扁平状与椭球状卵石运动过程中角速度变化情况

    Figure  10.   Variation of angular velocity during movement of flat pebble and ellipsoidal pebble

    图  11   不同管路倾角下异形卵石起动速度随等容粒径变化图(D=150 mm)

    Figure  11.   Variation of starting speed of pebble with equal volume particle size (D=150 mm)

    图  12   不同管路倾角下异形卵石起动速度随等容粒径变化图(D=100 mm)

    Figure  12.   Variation of starting speed of pebble with isometric particle size (D=100 mm)

    图  13   不同管路倾角下卵石起动速度随相对粒径变化图

    Figure  13.   Variation of starting speed of pebbles with relative particle size under different inclination angles of

    图  14   基于不同等容粒径的水平管路卵石受力

    Figure  14.   Stresses on pebbles of horizontal pipeline based on different isometric particle sizes

    图  15   不同粒径卵石起动速度试验结果与数值模拟结果对比(D=150 mm)

    Figure  15.   Comparison between test and numerical results of starting speed of pebbles with different particle sizes (D=150 mm)

    图  16   不同管路倾角下球形卵石起动速度随粒径变化图

    Figure  16.   Variation of starting speed of spherical pebbles with particle size under different inclination angles of pipes

    图  17   不同管径下卵石起动速度随等容粒径变化图

    Figure  17.   Variation of pebble starting speed with isometric particle size under different pipe diameters (vertical pipeline)

    图  18   同一卵石在同一流速不同管径管路中迎流面受力情况示意图

    Figure  18.   Stresses on upstream face of same pebble in pipelines with same flow velocity and different pipe diameters

    图  19   球形和异形卵石在管道各位置处临界起动流速

    Figure  19.   Critical starting velocities of spherical and irregular pebbles at each position of pipeline

    图  20   湍流状态下浆液在水平、45°倾斜管特殊部位流速分布图

    Figure  20.   Distribution of flow velocity of slurry at special parts of horizontal and inclined pipes under turbulent state

    图  21   湍流状态下浆液在水平、60°倾斜管特殊部位流速分布图

    Figure  21.   Distribution of flow velocity of slurry at special parts of horizontal and 60°inclined pipes under turbulent state

    表  1   试验浆液与泥浆参数对比

    Table  1   Physical and mechanical parameters of soils

    材料 浆液黏度/s 浆液密度/(g·cm-3)
    CMC溶液 22.05 1.15
    泥浆 20~35 1.05~1.3
    下载: 导出CSV

    表  2   不同形状卵石几何参数表

    Table  2   Geometric parameters of pebbles with different shapes

    标号 密度/
    (g·cm-3)
    形状系数 扁平度 饱满度 等容粒径/
    mm
    29 2.116 0.256 3.958 1.21 36.28
    33 2.296 0.351 3.000 1.07
    37 2.224 0.471 2.150 1.10
    4 2.180 0.548 1.841 1.10
    7 2.184 0.635 1.600 1.07
    9 2.040 0.728 1.375 1.05
    6 2.228 0.803 1.276 1.08
    3 2.064 0.904 1.109 1.06
    下载: 导出CSV

    表  3   不同等容粒径卵石几何参数表

    Table  3   Table of geometric parameters of pebbles with different isometric sizes

    标号 密度/
    (g·cm-3)
    等容粒径/mm 扁平度 饱满度 形状系数
    31 2.893 30.59 2.129~2.222 0.97~1.10 0.470~0.474
    36 2.790 38.55
    27 2.612 41.71
    16 2.664 51.18
    18 2.767 59.53
    24 2.707 62.85
    21 2.786 64.42
    下载: 导出CSV

    表  4   不同球形卵石几何参数表

    Table  4   Geometric parameters of pebbles with different shapes

    标号 密度/(g·cm-3) 粒径/mm
    右1 2.400 25
    右2 2.440 30
    右3 2.390 40
    右4 2.450 50
    右5 2..410 60
    右6 2.400 70
    右7 2.390 80
    下载: 导出CSV

    表  5   FLUENT和EDEM仿真参数表

    Table  5   Parameters of FLUENT and EDEM simulation

    参数 渣石 亚克力管 渣石-渣石 亚克力管-渣石
    剪切模量/Pa 2.212×1010 3.16×109
    泊松比 0.13 0.32
    密度/(kg·cm-3) 2000~2800 1190
    恢复系数 0.05 0.05
    静摩擦系数 0.25 0.25
    滚动摩擦系数 0.01 0.01
    下载: 导出CSV
  • [1] 徐涛, 史庆锋, 章定文, 等. 泥水盾构开挖面泥膜渗透特性与压力传递机制[J]. 岩土工程学报, 2023, 45(9): 1878-1887. doi: 10.11779/CJGE20220866

    XU Tao, SHI Qingfeng, ZHANG Dingwen, et al. Permeability characteristics of filter cake and pressure transfer on face during slurry shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1878-1887. (in Chinese) doi: 10.11779/CJGE20220866

    [2] 干聪豫, 方应冉, 刘泓志, 等. 复杂多变地层泥水盾构排浆管路振动特性分析[J]. 噪声与振动控制, 2023, 43(1): 275-280. doi: 10.3969/j.issn.1006-1355.2023.01.046

    GAN Congyu, FANG Yingran, LIU Hongzhi, et al. Analysis of vibration characteristics of slurry discharge pipelines of a slurry shield in complex and changeable stratums[J]. Noise and Vibration Control, 2023, 43(1): 275-280. (in Chinese) doi: 10.3969/j.issn.1006-1355.2023.01.046

    [3] 李承辉, 贺少辉, 刘夏冰. 粗粒径砂卵石地层中泥水平衡盾构下穿黄河掘进参数控制研究[J]. 土木工程学报, 2017, 50(增刊2): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2023.htm

    LI Chenghui, HE Shaohui, LIU Xiabing. Study on main parameters control of tunneling through the yellow river by a slurry balance shield in sandy gravel stratum with some large-size grains[J]. China Civil Engineering Journal, 2017, 50(S2): 147-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2023.htm

    [4] 王振飞, 张成平. 泥水盾构开挖面失稳破坏的颗粒流模拟研究[J]. 中国铁道科学, 2017, 38(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703009.htm

    WANG Zhenfei, ZHANG Chengping. Research on particle flow simulation for excavation face instability of slurry shield[J]. China Railway Science, 2017, 38(3): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703009.htm

    [5] 霍滨, 徐朝辉, 胡相龙, 等. 砂卵石地层泥水盾构施工技术难点及控制措施分析: 以兰州地铁穿黄隧道工程为例[J]. 隧道建设, 2018, 38(5): 846-850. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201805023.htm

    HUO Bin, XU Zhaohui, HU Xianglong, et al. Analysis of technical difficulties and control measures for slurry shield boring in sandy cobble strata: a case study of Yellow River-corssing tunnel of Lanzhou metro[J]. Tunnel Construction, 2018, 38(5): 846-850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201805023.htm

    [6] 黄波, 李晓龙, 陈长江. 大直径泥水盾构复杂地层长距离掘进过程中的泥浆管路磨损研究[J]. 隧道建设, 2016, 36(4): 490-496. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201604020.htm

    HUANG Bo, LI Xiaolong, CHEN Changjiang. Study of abrasion of slurry pipe of large-diameter slurry shield boring in complex strata[J]. Tunnel Construction, 2016, 36(4): 490-496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201604020.htm

    [7]

    DURAND R. The hydraulic transportation of coal and solid mate-rials in pipes[C]// Colloq of National Coal Board, London, 1952: 39-52.

    [8]

    WASP E J, KENNY J P, GANDHI R L. Solid-Liquid Flow Slurry Pipeline Transportation[M]. Clausthal Ger: Trans Tech Publications, 1977.

    [9]

    SHOOK C A. Pipelining solids: the design of short distance pipelines[C]// Proc Symp on Pipeline Transport of Solids, Toronto: Cana Soc Chem Engin, 1969.

    [10]

    MEHMET A K, MUSTAFA G. Critical flow velocity in slurry transporting horizontal pipelines[J]. Canadian Metallurgical Quarterly, 2001, 127(9): 763-771.

    [11] 费祥俊. 浆体的物理特性与管道输送流速[J]. 管道技术与设备, 2000(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGS200001000.htm

    FEI Xiangjun. The physical property of slurry and its velocity of pipeline transportation[J]. Pipeline Technique and Equipment, 2000(1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGS200001000.htm

    [12] 刘德忠. 矿浆管道水力输送的试验研究[J]. 泥沙研究, 1983(4): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ198304009.htm

    LIU Dezhong. Experimental study on hydraulic transportation of slurry pipeline[J]. Journal of Sediment Research, 1983(4): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ198304009.htm

    [13] 刘明潇, 孙东坡, 王鹏涛, 等. 双峰型非均匀沙粗细颗粒相互作用对推移质输移的影响[J]. 水利学报, 2015, 46(7): 819-827. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201507009.htm

    LIU Mingxiao, SUN Dongpo, WANG Pengtao, et al. Interactions between the coarse and fine particles and their influences on the bimodalnon-uniformbed load transport[J]. Journal of Hydraulic Engineering, 2015, 46(7): 819-827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201507009.htm

    [14] 周知进, 刘爱军, 夏毅敏, 等. 颗粒组分特性对扬矿硬管输送速度的影响[J]. 中南大学学报(自然科学版), 2011, 42(9): 2692-2697. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109027.htm

    ZHOU Zhijin, LIU Aijun, XIA Yimin, et al. Influence of particles component properties on transporting speed in lifting pipeline[J]. Journal of Central South University (Science and Technology), 2011, 42(9): 2692-2697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109027.htm

    [15]

    RAVELET F, BAKIR F, KHELLADI S, et al. Experimental study of hydraulic transport of large particles in horizontal pipes[J]. Experimental Thermal and Fluid Science, 2013, 45: 187-197.

    [16] 陶贺, 金保昇, 钟文琪. 不同物性对椭球形颗粒在移动床中流动特性影响的模拟研究[J]. 中国电机工程学报, 2011, 31(5): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201105013.htm

    TAO He, JIN Baosheng, ZHONG Wenqi. Effect of particle properties on the flow behaviors of ellipsoidal particles in the moving bed[J]. Proceedings of the CSEE, 2011, 31(5): 68-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201105013.htm

    [17]

    AKHSHIK S, BEHZAD M, RAJABI M. CFD-DEM simulation of the hole cleaning process in a deviated well drilling: The effects of particle shape[J]. Particuology, 2016, 25: 72-82.

    [18] 金大龙, 袁大军, 郑浩田, 等. 高水压条件下泥水盾构开挖面稳定离心模型试验研究[J]. 岩土工程学报, 2019, 41(9): 1653-1660. doi: 10.11779/CJGE201909009

    JIN Dalong, YUAN Dajun, ZHENG Haotian, et al. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1653-1660. (in Chinese) doi: 10.11779/CJGE201909009

    [19] 刘方. 砂卵石地层泥水平衡盾构泥浆性能及掘进面稳定性研究[D]. 重庆: 重庆交通大学, 2019.

    LIU Fang. Study on the Slurry Performance and Face Stability of SPB Shield Tunnel in Cobble-rich Soil[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)

    [20]

    YANG D, XIA Y M, WU D, et al. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum[J]. Tunnelling and Underground Space Technology, 2018, 71: 223-230.

    [21]

    THOMAS D G. Transport characteristics of suspensions: part Ⅵ, minimum transport velocity for large Particle size uspensions in round horizontal pipes[J]. American Institute of Chemical Engineers Journal, 1962, 8(3): 373-378.

  • 期刊类型引用(6)

    1. 唐宇,阳军生,郑响凑,童甲修,汤冲. 高温富水隧道弱风化片麻岩力学特性试验研究. 岩石力学与工程学报. 2025(01): 128-139 . 百度学术
    2. 马双泽,陈伟,吕聪聪,张塑彪,张帆. 高温与循环冷却对花岗岩抗剪强度影响试验研究. 矿业研究与开发. 2025(03): 137-147 . 百度学术
    3. 王健翔,孙珍平,王士奎,许蕾. 高温作用后砂岩力学性能及裂纹演化特征研究. 金属矿山. 2025(04): 61-68 . 百度学术
    4. 朱振南,王殿永,杨圣奇,解经宇,袁益龙,吴廷尧,田文岭,孙博文,田红,陈劲. 不同冷却速率下干热花岗岩渗透率演化特征对比研究. 岩石力学与工程学报. 2024(02): 385-398 . 百度学术
    5. 周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 . 百度学术
    6. 何将福,任成程,何坤,余启航,李欣儒,邓旭. 循环热冲击花岗岩微观裂隙表征与渗透特性演化规律. 煤田地质与勘探. 2024(12): 131-142 . 百度学术

    其他类型引用(8)

图(21)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 14
出版历程
  • 收稿日期:  2023-05-21
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-08-31

目录

    /

    返回文章
    返回