• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂颗粒矿物成分对MICP过程的影响及机理

刘浩, 唐朝生, 吕超, 章君政, 泮晓华, 王宝军

刘浩, 唐朝生, 吕超, 章君政, 泮晓华, 王宝军. 砂颗粒矿物成分对MICP过程的影响及机理[J]. 岩土工程学报, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431
引用本文: 刘浩, 唐朝生, 吕超, 章君政, 泮晓华, 王宝军. 砂颗粒矿物成分对MICP过程的影响及机理[J]. 岩土工程学报, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431
LIU Hao, TANG Chaosheng, LÜ Chao, ZHANG Junzheng, PAN Xiaohua, WANG Baojun. Effects and mechanisms of mineral composition of sand on MICP process[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431
Citation: LIU Hao, TANG Chaosheng, LÜ Chao, ZHANG Junzheng, PAN Xiaohua, WANG Baojun. Effects and mechanisms of mineral composition of sand on MICP process[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431

砂颗粒矿物成分对MICP过程的影响及机理  English Version

基金项目: 

国家杰出青年科学基金项目 41925012

国家自然科学基金重点项目 42230710

江苏省自然科学基金项目 BK20211087

详细信息
    作者简介:

    刘浩(1999—),男,博士研究生,主要从事微生物岩土工程方面的研究工作。E-mail: liuhao@smail.nju.edu.cn

    通讯作者:

    唐朝生, E-mail: tangchaosheng@nju.edu.cn

  • 中图分类号: TU441

Effects and mechanisms of mineral composition of sand on MICP process

  • 摘要: 微生物诱导碳酸钙沉淀(MICP)是一种绿色环保的新型土体加固技术,具有广泛的应用前景。为了研究砂颗粒矿物成分对MICP过程的影响,分别选用石英砂和钙质砂为代表性研究对象,利用环氧树脂胶结固化后打磨制成样片,再在配置好的菌液和胶结液中对样片表面进行MICP处理,结合X射线衍射(XRD)、扫描电镜(SEM)以及超声震荡试验定量分析了碳酸钙产量、矿物晶型、晶貌及界面胶结特性。结果表明:①钙质砂颗粒比石英砂颗粒更利于微生物诱导生成碳酸钙,平均单位面积碳酸钙生成量前者约为后者的5倍;②两种砂颗粒表面生成的碳酸钙主要为球霰石和方解石,钙质砂界面能更低,诱导生成更多的方解石;③石英砂表面生成的碳酸钙主要为较大的球形颗粒,而钙质砂表面的碳酸钙形貌主要为板片状;④微生物在钙质砂颗粒上诱导生成的碳酸钙呈现更高的界面胶结强度,经超声波震荡后,石英砂颗粒上碳酸钙的质量损失率约为钙质砂的10倍。在此基础上,运用微生物学、晶体化学、结晶矿物学等其他相关学科的理论,系统分析了石英砂和钙质砂对MICP过程及效果的影响机理,取得了新的认识,对优化MICP技术在岩土工程中的应用有重要意义。
    Abstract: The microbially induced calcium carbonate precipitation (MICP) is a new environmentally friendly stabilization technique for soils with broad application prospects. To investigate the effect of mineral composition of sand particles on the MICP process, the quartz sand and calcareous sand are chosen as the representative materials. The sand particles are bound with epoxy resin to create samples, which are subsequently subjected to the MICP treatment by immersing them in prepared bacterial and cementation solutions. The calcium carbonate production, mineral phases, crystal morphology and interfacial cementation characteristics are quantitatively analyzed using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultrasonic tests. The results indicate: (1) The calcareous sand particles are more conducive to the MICP, with an average calcium carbonate generation per unit area that is about 5 times that of the quartz sand particles. (2) The calcium carbonate precipitated on the surfaces of both sand particles mainly consists of vaterite and calcite, with the calcareous sand inducing a higher proportion of calcite precipitation because of its lower interfacial energy. (3) The calcium carbonate precipitated on the surface of the quartz sand is predominantly composed of larger spherical particles, while the morphology of calcium carbonate on the surface of the calcareous sand is predominantly plate-like. (4) The microbially induced calcium carbonate on the calcareous sand particles exhibits higher interfacial cementation strength. After subjecting the samples to ultrasonic agitation, the mass loss rate of the calcium carbonate on the quartz sand is about 10 times that on the calcareous sand. Based on these findings, the theories from the disciplines such as microbiology, crystal chemistry and mineralogy are employed to systematically analyze the mechanisms through which quartz sand and calcareous sand affect the MICP process and its outcomes. This study provides new insights and is of significant importance for optimizing the application of the MICP in geotechnical engineering.
  • 为了解决沿海地区能源需求缺口问题并减少对石化能源的依赖,海上风电作为一种清洁可再生资源已经成为新能源领域发展的重点。中国近海风能资源丰富,根据国家能源局发展规划,中国“十三五”期间风电开工建设规模达到千万千瓦。目前,嘉兴在建的300兆瓦嘉兴1号海上风电场是杭州湾平湖海域大型海上风电场。风场中心点离岸约20 km,工程海域水深8~12 m,海底滩地表层主要为淤泥,软土地基厚达40 m。在风机设备自重荷载及风浪、机器振动引起的循环荷载的作用下,海洋软黏土易发生孔压累积、变形发展和刚度弱化,进而引起风机基础性能劣化或失稳。因此,海洋结构物基础设计需对静动荷载作用下海底饱和软黏土刚度弱化特性进行更为深入的研究。

    小应变剪切模量是土的基本力学参数,在室内土工试验中通常可由共振柱试验或弯曲元试验进行量测。使用弯曲元测量土体小应变剪切模量时可与三轴试验系统联合测试,试验原理明确,操作方法简单,获得了较多应用[1-2]。早期研究表明,土体小应变剪切模量与其孔隙比、有效应力和超固结比有关,这些影响因素可通过Hardin公式描述[3]。对于静动荷载作用下的土体,不排水静动加载历史对小应变剪切模量的影响除了反映在有效应力的改变之外,还需考虑土体结构的损伤演化。周燕国等[4]和谷川等[5]分别在饱和砂土和软土中发现了小应变剪切模量在大幅值动力荷载作用下减小的现象。与小应变剪切模量不同,土作为强非线性材料,其在中到大应变下的塑性模量将发生衰减。研究表明,影响土体刚度弱化特性的因素包括超固结比、非等向固结、加载幅值、主应力轴旋转等[6-7]。为了在海洋基础设计中考虑海床的循环弱化效应,建立软弱土循环弱化的表征模型甚为关键。Idriss等[8]通过分析动模量衰减规律提出了软化指数的概念,并将其与循环振次建立关联。基于软化指数的刚度弱化模型得到了研究者的广泛采用,王军等[9]、黄茂松等[10]、郭小青等[11]分析了国内不同区域的典型软黏土循环弱化特性与振次的关系。应当指出的是,小应变剪切模量和塑性模量作为土体结构响应的宏观表征,应进一步研究二者间相互关系,而以往研究多针对其中的单一对象开展。

    本文开展了一系列不排水静动三轴试验,在单调和循环剪切不同阶段进行剪切波速量测,研究了正常固结海洋软黏土的小应变剪切模量和刚度弱化特性。本文研究成果揭示了静动加载历史对原状软黏土刚度特性的影响规律,通过建立小应变剪切模量与动模量的关系,为复杂应力条件下土体力学特性分析提供了新的途径,可应用于工程荷载作用下场地软土刚度弱化特性的评价。

    本文试验所用原状软黏土取自嘉兴1号海上风电场工程所处海域,取样深度18~21 m,液限42%,塑性指数23。主要物性参数:相对密度Gs=2.66,含水率w=45~48%,孔隙比e=1.20~1.28,黏粒含量=49%,粉粒含量=50%。试验时,对原状薄壁土样切取直径为50 mm,高度为100 mm的圆柱体试样。试验采用GDS土体多功能三轴试验系统,该系统可实现固结、单调及循环荷载等多种加载模式。将制备的试样装入三轴压力室进行反压饱和并检查B值,均达到0.95以上,满足饱和度要求。

    对制备的饱和软黏土试样等向固结至初始有效围压p0=50~400 kPa。一维压缩试验表明本文土样的先期固结应力约为35 kPa,因此试样均处于正常固结状态。固结完成后分别在不排水条件下进行单调和循环三轴试验,试验方案见表1。单调加载时,采用应变控制式三轴压缩加载模式,加载速率为0.05 mm/min。循环加载时,输入应力控制式正弦波形荷载并调整循环应力比CSR(CSR定义为循环偏应力幅值和单调加载时峰值偏应力之比)大小。对于Cyc1和Cyc2组试验,CSR逐级增大且每级荷载循环振次N均为10。

    表  1  单调及循环三轴试验
    Table  1.  Monotonic and cyclic triaxial tests
    试验类别组号p0/kPaNCSR
    单调试验Mon1200
    Mon2400
    Mon350
    Mon4100
    Mon5300
    循环试验Cyc12001300.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.7, 1.0, 1.35
    Cyc24001300.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.7, 1.0, 1.35
    Cyc320010000.5
    Cyc4200201.0
    Cyc540010000.5
    下载: 导出CSV 
    | 显示表格

    为了获得静动加载条件下土体小应变刚度演化规律,本文结合GDS 弯曲元测试系统对单调和循环三轴试验过程中的土样进行剪切波速测试。该系统包括两个压电传感器,其中一个作为激发源装配在土样帽上插入土样上端,另一个作为接收器固定在压力室底部插入土样下端。试验时,激发源产生的剪切波通过土体传播到接收端,通过观察时域波形得到剪切波在土样内的传播波速,进而根据土体密度得到其小应变剪切模量。本次试验在多个阶段进行了剪切波速的量测。第一个阶段为固结完成时(εa=0或N=0),以建立小应变剪切模量与初始固结围压的定量关系。同时,为了研究静动力加载历史对土体小应变刚度特性的影响,对Mon1、Mon2和Cyc1~5等7组三轴试验,当应变或振次达到设定值后暂停加载,待试样内孔压均匀稳定分布后进行弯曲元试验。

    图1(a)所示为通过弯曲元试验获得的固结完成时土体小应变剪切模量G0和初始固结围压p0的关系。由图可知,G0p0增大而增大。早期研究表明,对于正常固结饱和软黏土,其小应变剪切模量可表示为初始固结围压和孔隙比的函数[3],即Hardin公式:

    图  1   Gmax,0-p0关系和归一化Gmax,0-p0关系
    Figure  1.  Relationship between Gmax,0 and p0 and normalized relationship between Gmax,0 and p0
    G0/pa=SF(e)(p0/pa)n (1)

    式中 S,n为经验参数;pa为大气压力以统一量纲(pa=101 kPa);F(e)是表征孔隙比影响的函数,对于饱和软黏土一般采用以下形式[5]

    F(e)=1/(0.3+0.7e2) (2)

    根据式(1),(2)对图1(a)中数据进行归一化处理,如图1(b)所示。结果表明,考虑孔隙比影响的小应变剪切模量与初始有效围压有较好的相关性,可用式(1)拟合。对于本试验所用的嘉兴原状软黏土,经验参数S,n可分别取为S=358和n=0.665。

    对于单调荷载试验Mon1和Mon2,在轴向应变发展的不同阶段进行了剪切波速的量测,并根据土样高度变化情况算出各阶段小应变剪切模量Gmax,如图2所示。可见,土体小应变剪切模量随单调加载引起的轴向应变先减小后增大;在εa为8%~10%处,Gmax/G0达到最小值。这表明在单调加载初期,由于孔压累积引起有效应力降低、颗粒排布扰动及结构损伤,土体刚度逐渐降低;随着加载继续进行,试样呈现应变硬化,且由于发生剪胀有效应力有所恢复,土体小应变剪切模量转而增大。

    图  2  单调加载下的小应变剪切模量
    Figure  2.  Small strain shear moduli under monotonic loading

    单调剪切荷载作用时,土体在中到大应变下的刚度弱化特性一般用割线模量Gsec表征。图3给出了不同初始围压条件下割线模量衰减规律。具体来说,Gsec随应变发展逐渐减小并趋近于0;同时,初始固结围压越大,Gsec相对更大且衰减更快。进一步地,对割线模量进行归一化处理后,可以发现,Gsec/G0随轴向应变衰减的规律不受初始固结条件的影响而近似唯一。

    图  3  割线模量与应变的关系
    Figure  3.  Secant moduli against axial strain

    图2类似,图4所示为循环剪切过程中土体归一化小应变剪切模量Gmax/G0与单幅应变的关系,该关系受初始固结围压和循环荷载幅值影响较小。当应变较小时,归一化剪切模量急剧减小;随着循环应变进一步发展,Gmax/G0减小的趋势逐渐缓慢,最终稳定至0.2左右。这表明,动荷载作用下土体的循环弱化将使得其刚度降低,且这种降低的趋势可由单幅应变较好表征。与常见的基于循环振次N的刚度软化模型相比,建立小应变剪切模量与循环单幅应变的关联无需考虑动荷载幅值的影响。

    图  4  循环加载下的小应变剪切模量
    Figure  4.  Small strain shear moduli under cyclic loading

    循环剪切荷载作用下,土体发生塑性变形时的刚度弱化特性通常用等价模量Geq表征,Geq一般定义为某一循环振次所形成的应力应变滞回圈骨干线的斜率[12]图5(a)所示为5组循环三轴试验中等价模量衰减规律。总地来说,Geq随单幅应变发展逐渐减小并趋近于0;给定固结围压条件下,循环应力比CSR对动模量随应变减小的规律无显著影响;但是,当初始固结围压不同时,Geq在高围压下相对较大且衰减更快。根据弯曲元试验测得的固结完成时小应变剪切模量对等价模量进行归一化处理,如图5(b)所示。可以看到,归一化后的等价模量与动单幅应变的关系在不同试验条件下具有较好一致性,与初始围压和循环应力比均无关。这与王军等[9]观察到的杭州软土刚度软化特征类似。Geq/G0εa,s减小的趋势在应变较小时逐渐加快后又减慢,在εa,s =1%后缓慢趋近于0。图5(b)中一并给出了单调加载下土体归一化割线模量Gsec/G0随轴向应变衰减的均值线。与循环剪切荷载相比,单调加载时饱和软黏土在中到大应变下(εaεa,s >0.01%塑性模量相对较小,刚度衰减速率也相对较慢。

    图  5  等价模量及归一化等价模量与应变的关系
    Figure  5.  Equivalent moduli and normalized equivalent moduli against axial strain

    图4,5表明,饱和软黏土在动荷载作用下的小应变剪切模量Gmax和等价模量Geq都会随循环应变累积发生弱化,且这种弱化趋势经归一化处理后与固结围压和循环应力比无关。据此,可直接建立动模量Geq/G0和小应变剪切模量Gmax/G0之间的关联,如图6所示。从图中可以看到,在循环荷载作用的不同阶段,饱和软土的Geq/G0Gmax/G0间存在唯一关系:前者随着后者的减小而不断减小,可用下式表示:

    图  6  循环加载下等价模量与小应变剪切模量的关系
    Figure  6.  Relationship between equivalent modulus and small strain shear modulus under cyclic loading
    ln(Geq/G0)=a+b(Gmax/G0), (3)

    式中,a,b为经验参数,对于本文的嘉兴海洋软黏土,分别取a=-6.57和b=5.85。在工程实际中,可通过现场试验获得的剪切波速确定土体小应变剪切模量,基于实验室建立的动模量与小应变剪切模量的关系,从而快速评估动力加载历史对土体刚度弱化特性的影响。为了获得针对海上风电工程动荷载作用特点的软黏土强度折减规律,尚需对动载结束的土样进一步开展抗剪强度试验研究,并考虑复杂初始应力状态和动力加载条件的影响。

    本文开展了一系列静动三轴联合弯曲元试验,探讨不排水条件下静动应力加载历史对原状饱和软黏土刚度弱化特性的影响。

    (1)海洋软黏土正常固结完成时的小应变剪切模量与初始有效围压有较好的相关性,可用Hardin公式描述孔隙比和固结围压的影响。

    (2)单调剪切荷载作用下,土体小应变剪切模量随轴向应变先减小后增大;其在中到大应变下的割线模量则不断减小直至趋近于0。

    (3)循环剪切荷载作用下,土体小应变剪切模量逐渐减小并最终趋于稳定;归一化动模量随循环单幅应变不断减小,且其值相较于单调剪切时的割线模量略大。土体动模量弱化特性可通过动荷载作用下的小应变剪切模量表征,二者存在较好的一致性关系,与初始固结围压和循环荷载幅值无关。

  • 图  1   试验样片照片

    Figure  1.   Photos of test specimens

    图  2   反应装置示意图

    Figure  2.   Diagram of reaction devices

    图  3   图像处理

    Figure  3.   Picture processing

    图  4   单位面积砂颗粒上碳酸钙生成量

    Figure  4.   Masses of calcium carbonate per unit area of sand particles

    图  5   细菌与砂颗粒相互作用的DLVO曲线

    Figure  5.   DLVO energy profiles of bacteria-sand interactions

    图  6   砂颗粒表面的MICP过程示意图

    Figure  6.   Schematic diagram of MICP process on surface of sand particles

    图  7   砂颗粒表面碳酸钙的XRD分析图谱

    Figure  7.   XRD analysis of calcium carbonate on surface of sand particles

    图  8   砂颗粒表面碳酸钙晶型选择

    Figure  8.   Selection of polymorphs of calcium carbonate precipitated on surface of sands

    图  9   扫描电镜下碳酸钙的形貌

    Figure  9.   Morphologies of calcium carbonate under SEM

    图  10   超声震荡后碳酸钙质量损失率

    Figure  10.   Mass loss rates of calcium carbonate after ultrasonic tests

  • [1] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. http://cge.nhri.cn/article/id/15257

    CHENG Xiaohui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) http://cge.nhri.cn/article/id/15257

    [2] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学(北京), 2014.

    ZHAO Qian. Experimental Study on Soil Improvement Using Microbial induced Calcite Precipitation (MICP)[D]. Beijing: China University of Geosciences(Beijing), 2014. (in Chinese)

    [3] 董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm

    DONG Bowen, LIU Shiyu, YU Jin, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm

    [4]

    VAN PAASSEN L. Biogrout, Ground Improvement by Microbial Induced Carbonate Precipitation[D]. Netherlands: Delft University of Technology, 2009.

    [5] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. doi: 10.11779/CJGE201801002

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) doi: 10.11779/CJGE201801002

    [6] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    QIAN Chunxiang, WANG Anhui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    [7] 李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    LI Chi, WANG Shuo, WANG Yanxing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    [8] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008

    [9] 刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1): 191-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001020.htm

    LIU Shiyu, YU Jin, ZENG Weilong, et al. Repair effect of tabia cracks with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 191-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001020.htm

    [10] 孙潇昊, 缪林昌, 吴林玉, 等. 低温条件微生物MICP沉淀产率试验研究[J]. 岩土工程学报, 2019, 41(6): 1133-1138. doi: 10.11779/CJGE201906018

    SUN Xiaohao, MIAO Linchang, WU Linyu, et al. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. (in Chinese) doi: 10.11779/CJGE201906018

    [11]

    LÜ C, TANG C S, ZHU C, et al. Environmental dependence of microbially induced calcium carbonate crystal precipitations: experimental evidence and insights[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(7): 04022050. doi: 10.1061/(ASCE)GT.1943-5606.0002827

    [12]

    DYER M, VIGANOTTI M. Oligotrophic and eutrophic MICP treatment for silica and carbonate sands[J]. Bioinspired Biomimetic and Nanobiomaterials, 2017, 6(3): 168-183. doi: 10.1680/jbibn.16.00002

    [13]

    MONTOYA B M. Bio-Mediated Soil Improvement and the Effect of Cementation on the Behavior, Improvement, and Performance of Sand[D]. Davis: University of California, 2012.

    [14]

    CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures: Ⅱ Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 1974, 7(6): 526-531. doi: 10.1107/S0021889874010387

    [15]

    DOWNS R T, HALL-WALLACE M. The American mineralogist crystal structure database[J]. American Mineralogist, 2003, 88(1): 247-250.

    [16]

    SEIFAN M, BERENJIAN A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete[J]. World Journal of Microbiology and Biotechnology, 2018, 34(11): 115-168.

    [17]

    GÖRGEN S, BENZERARA K, SKOURI-PANET F, et al. The diversity of molecular mechanisms of carbonate biomineralization by bacteria[J]. Discover Materials, 2020, 1(1): 1-20.

    [18]

    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029

    [19]

    ZHONG H, LIU G S, JIANG Y B, et al. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review[J]. Biotechnology Advances, 2017, 35(4): 490-504. doi: 10.1016/j.biotechadv.2017.03.009

    [20]

    LIU Y, ZHANG C, HILPERT M, et al. Transport of Cryptosporidium parvum oocysts in a silicon micromodel[J]. Environ Sci Technol, 2012, 46(3): 1471-1479. doi: 10.1021/es202567t

    [21]

    HOGG R, HEALY T W, FUERSTENAU D W. Mutual coagulation of colloidal dispersions[J]. Transactions of The Faraday Society, 1966, 62: 1638-1651. doi: 10.1039/tf9666201638

    [22]

    GREGORY J. Approximate expressions for retarded van der waals interaction[J]. Journal of Colloid and Interface Science, 1981, 83(1): 138-145. doi: 10.1016/0021-9797(81)90018-7

    [23]

    LIU Y, KUHLENSCHMIDT M S, KUHLENSCHMIDT T B, et al. Composition and conformation of cryptosporidium parvum oocyst wall surface macromolecules and their Effect on Adhesion Kinetics of oocysts on quartz surface[J]. Biomacromolecules, 2010, 11(8): 2109-2115. doi: 10.1021/bm100477j

    [24]

    SHARMA P K, HANUMANTHA RAO K. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry[J]. Advances in Colloid and Interface Science, 2002, 98(3): 341-463. doi: 10.1016/S0001-8686(02)00004-0

    [25]

    VAN OSS C J. Acid-base interfacial interactions in aqueous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 78: 1-49.

    [26]

    JANCZUK B, ZDZIENNICKA A. A study on the components of surface free energy of quartz from contact angle measurements[J]. Journal of Materials Science, 1994, 29(13): 3559-3564. doi: 10.1007/BF00352063

    [27]

    HOLYSZ L, CHIBOWSKI E. Surface free energy components of calcium carbonate and their changes due to radiofrequency electric field treatment[J]. Journal of Colloid and Interface Science, 1994, 164(1): 245-251. doi: 10.1006/jcis.1994.1163

    [28]

    YOREO J D, VEKILOV P G. Principles of crystal nucleation and growth[J]. Reviews in Mineralogy & Geochemistry, 2003, 54: 57-93.

    [29] 邬冠群. 造岩矿物表面性质对碳酸钙矿物成核生长过程影响研究[D]. 南京: 南京大学, 2021.

    WU Guanqun. The Effect of Surface Properties of Rock-forming Minerals on Nucleation and Growth of Calccium Carbonates[D]. Nanjing: Nanjing University, 2021. (in Chinese)

    [30]

    LIOLIOU M G, PARASKEVA C A, KOUTSOUKOS P G, et al. Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz[J]. Journal of Colloid and Interface Science, 2007, 308(2): 421-428. doi: 10.1016/j.jcis.2006.12.045

    [31]

    CHANG R, KIM S, LEE S, et al. Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism[J]. Frontiers in Energy Research, 2017, 5: 1-12.

    [32]

    OGINO T, SUZUKI T, SAWADA K. The formation and transformation mechanism of calcium carbonate in water[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2757-2767.

    [33]

    CHEN J, XIANG L. Controllable synthesis of calcium carbonate polymorphs at different temperatures[J]. Powder Technology, 2009, 189(1): 64-69.

    [34]

    ZHANG W, JU Y, ZONG Y, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environ Sci Technol, 2018, 52(16): 9266-9276.

    [35]

    KONOPACKA-LYSKAWA D. Synthesis methods and favorable conditions for spherical vaterite precipitation: a review[J]. Crystals, 2019, 9(4): 223.

    [36]

    TONG H, MA W T, WANG L L, et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a l-aspartic acid inducing process[J]. Biomaterials, 2004, 25(17): 3923-3929.

    [37]

    SONDI I, SALOPEK-SONDI B. Influence of the primary structure of enzymes on the formation of CaCO2 polymorphs: a comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases[J]. Langmuir, 2005, 21(19): 8876-8882.

    [38]

    RODRIGUEZ-NAVARRO C, JROUNDI F, SCHIRO M, et al. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation[J]. Appl Environ Microbiol, 2012, 78(11): 4017-4029.

    [39]

    RONG H, QIAN C X. Binding functions of microbe cement[J]. Advanced Engineering Materials, 2015, 17(3): 334-340.

    [40]

    SUN T, HAO W T, LI J R, et al. Preservation properties of in situ modified CaCO3–chitosan composite coatings[J]. Food Chemistry, 2015, 183: 217-226.

  • 期刊类型引用(3)

    1. 许莹莹,朱晨,孙枫,潘坤,潘晓东. 海相软土弹性剪切模量及静动力刚度弱化特性. 浙江工业大学学报. 2025(02): 131-137+144 . 百度学术
    2. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 . 百度学术
    3. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 . 百度学术

    其他类型引用(6)

图(10)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  39
  • PDF下载量:  104
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-05-16
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-08-31

目录

/

返回文章
返回