• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

氧化镁复合水泥固化硫酸盐渍土的力学、膨胀性能及微观机理

李文涛, 孙章皓, 庄妍, 肖衡林, 付志伟, 周鑫隆

李文涛, 孙章皓, 庄妍, 肖衡林, 付志伟, 周鑫隆. 氧化镁复合水泥固化硫酸盐渍土的力学、膨胀性能及微观机理[J]. 岩土工程学报, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409
引用本文: 李文涛, 孙章皓, 庄妍, 肖衡林, 付志伟, 周鑫隆. 氧化镁复合水泥固化硫酸盐渍土的力学、膨胀性能及微观机理[J]. 岩土工程学报, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409
LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409
Citation: LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409

氧化镁复合水泥固化硫酸盐渍土的力学、膨胀性能及微观机理  English Version

基金项目: 

国家自然科学基金面上项目 52078195

湖北工业大学河湖健康智慧感知与生态修复教育部重点实验室开放研究基金项目 HGKFZP008

湖北省自然科学基金青年项目 2021CFB286

湖北省教育厅科学技术研究计划青年人才项目 Q20211404

详细信息
    作者简介:

    李文涛(1985—),男,湖北汉川人,博士,副教授,主要从事道路工程、环境岩土方面的研究工作。E-mail: wli20201027@hbut.edu.cn

    通讯作者:

    庄妍, E-mail: Joanna_zhuang@163.com

  • 中图分类号: TU449

Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement

  • 摘要: 硫酸盐(渍)土易引发溶陷、膨胀、腐蚀地基等岩土灾害,而水泥固化会导致膨胀性矿物——钙矾石的生成,造成硫酸盐土体膨胀、强度损失和耐久性降低。为了避免上述问题,采用氧化镁(MgO)部分替代水泥(即MgO复合水泥),用于固化处理硫酸盐土(即石膏土)。通过开展垂直膨胀、无侧限抗压强度(UCS)、X射线衍射(XRD)、扫描电镜(SEM)和核磁共振(NMR)试验,研究MgO与水泥配比对固化土膨胀特性和力学性能的影响规律,并揭示MgO复合水泥(MgO-水泥)固化硫酸盐土的微观机理。试验结果表明:随着MgO与水泥配比增加,固化土的总膨胀率先减小后增大,而UCS总体呈现为先增大后减小。在微观机理方面,加入适量MgO可减少钙矾石生成;而加入过量MgO后,水化硅酸镁(MSH)的形成抑制了水化硅酸钙(CSH)形成,削弱了CSH的影响。综上,MgO∶水泥(MgO∶C)=0.5∶9.5是固化硫酸盐土较优的MgO与水泥配比。
    Abstract: The sulfate-bearing (saline) soil may easily cause geotechnical disasters, such as subsidence, expansion and foundation corrosion. However, stabilizing the sulfate-bearing soil by cement can lead to the formation of expansive mineral-ettringite, resulting in soil swelling, strength loss and poor durability. To avoid the aforementioned problems, the magnesium oxide (MgO) is used to partially replace cement (MgO combined with cement) in the stabilization treatment of the sulfate-bearing soil (gypseous soil). By conducting the tests of vertical swelling, unconfined compressive strength (UCS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR), the effects of the ratio of MgO to cement on the swelling and mechanical properties of the stabilized soil are explored. Furthermore, it reveals the micro-mechanism of the sulfate-bearing soil stabilized with MgO and cement (MgO-cement). The results show that as the ratio of MgO to cement increases, the total swelling percentage of the stabilized soil first decreases and then increases, while the UCS has an opposite trend, first increasing and then decreasing. In terms of the micro-mechanism, the addition of an appropriate amount of MgO can reduce the formation of ettringite. However, when an excess of MgO is added, the formation of magnesium silicate hydrate (MSH) inhibits the formation of calcium silicate hydrate (CSH), thereby weakening the effects of CSH. In summary, MgO: cement= 0.5∶9.5 is considered to be an optimal ratio of MgO to cement for stabilizing the sulfate-bearing soils.
  • 图  1   未固化土和固化土的击实曲线

    Figure  1.   Compaction curves of unstabilized and stabilized soils

    图  2   膨胀试验示意图

    Figure  2.   Schematic diagram for the swelling test

    图  3   MgO-水泥固化土的垂直膨胀率

    Figure  3.   Vertical swelling rates of soils stabilized by MgO-cement

    图  4   固化土浸水后的表面特征

    Figure  4.   Surface features of stabilized soils after soaking

    图  5   不同条件下固化土应力-应变曲线

    Figure  5.   Stress-strain curves of stabilized soils under different conditions

    图  6   浸泡前后固化土的无侧限抗压强度

    Figure  6.   UCS of stabilized soils before and after soaking

    图  7   高岭土和MgO-水泥固化土浸泡后的XRD图谱

    Figure  7.   XRD patterns of kaolin and soils stabilized by MgO-cement after soaking

    图  8   浸泡后MgO-水泥固化土SEM图

    Figure  8.   SEM images of soils stabilized by MgO-cement after soaking

    图  9   浸泡后MgO-水泥固化土核磁共振T2

    Figure  9.   NMR T2 spectra of soils stabilized by MgO-cement after soaking

    图  10   机理示意图

    Figure  10.   Schematic of mechanism

    表  1   主要材料氧化物组分及百分含量(%按重量计算)

    Table  1   Oxide compositions of main materials (% by weight)

    组成 SiO2 CaO Al2O3 MgO Fe2O3 SO3 K2O 其他 烧失量
    高岭土 53.90 43.24 0.89 0.08 0.19 1.7 0
    石膏 8.32 58.39 2.61 5.21 0.72 23.70 0.55 0.5 0
    水泥 20.66 59.39 5.60 3.87 3.23 4.99 0.10 1.27 0.89
    MgO 10.23 5.62 6.34 76.72 0.55 0.54 0
    下载: 导出CSV
  • [1] 张佳兴, 裴向军, 韦璐. 硫酸盐渍土水泥加固盐胀抑制剂研究[J]. 岩土工程学报, 2018, 40(1): 155-161. doi: 10.11779/CJGE201801016

    ZHANG Jiaxing, PEI Xiangjun, WEI Lu. Salt expansion inhibitors for sulphated salty soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 155-161. (in Chinese) doi: 10.11779/CJGE201801016

    [2] 郑子昂, 张卫兵, 钱晓明, 等. 固化剂处理硫酸盐渍土的盐胀与溶陷特性研究[J]. 工程勘察, 2017, 45(3): 1-5, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201703001.htm

    ZHENG Ziang, ZHANG Weibing, QIAN Xiaoming, et al. Study on salt expansion and collapsibility characteristics of solidified sulphate salty soil with curing agent[J]. Geotechnical Investigation & Surveying, 2017, 45(3): 1-5, 28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201703001.htm

    [3] 温利强, 杨成斌, 李士奎. 中国西北地区盐渍土分布及危害[J]. 工程与建设, 2010, 24(5): 585-587. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201005003.htm

    WEN Liqiang, YANG Chengbin, LI Shikui. Distribution and harm of saline soil in Northwest of China[J]. Engineering and Construction, 2010, 24(5): 585-587. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201005003.htm

    [4] 王鹏程, 尧俊凯, 陈锋, 等. 无砟轨道路基上拱原因试验研究[J]. 铁道建筑, 2018, 58(1): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm

    WANG Pengcheng, YAO Junkai, CHEN Feng, et al. Experimental study on heaving cause of ballastless track subgrade[J]. Railway Engineering, 2018, 58(1): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm

    [5] 梁俊怡. 滨海地区公路盐渍土改良技术试验[J]. 广东公路交通, 2018, 44(5): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT201805012.htm

    LIANG Junyi. Research on improvement technology for saline soil subgrade of coastal highway[J]. Guangdong Highway Communications, 2018, 44(5): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT201805012.htm

    [6] 魏唐中, 李佩宁. 滨海地区盐渍土改良机理微观研究[J]. 公路与汽运, 2012(6): 127-130, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201206034.htm

    WEI Tangzhong, LI Peining. Microscopic study on improvement mechanism of saline soil in coastal areas[J]. Highways & Automotive Applications, 2012(6): 127-130, 139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201206034.htm

    [7]

    PUPPALA A J, GRIFFIN J A, HOYOS L R, et al. Studies on sulfate-resistant cement stabilization methods to address sulfate-induced soil heave[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 391-402. doi: 10.1061/(ASCE)1090-0241(2004)130:4(391)

    [8]

    CHESHOMI A, ESHAGHI A, HASSANPOUR J. Effect of lime and fly ash on swelling percentage and Atterberg limits of sulfate-bearing clay[J]. Applied Clay Science, 2017, 135: 190-198. doi: 10.1016/j.clay.2016.09.019

    [9]

    PUPPALA A J, INTHARASOMBAT N, VEMPATI R K. Experimental studies on ettringite-induced heaving in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(3): 325-337. doi: 10.1061/(ASCE)1090-0241(2005)131:3(325)

    [10]

    PUPPALA A J, CONGRESS S S C, TALLURI N, et al. Sulfate-heaving studies on chemically treated sulfate-rich geomaterials[J]. Journal of Materials in Civil Engineering, 2019, 31(6): 04019076. doi: 10.1061/(ASCE)MT.1943-5533.0002729

    [11] 张傲宁. 水泥固化硫酸盐渍土盐胀机理和性能调控研究[D]. 南京: 东南大学, 2020.

    ZHANG Aoning. Study on Salt Expansion Mechanism and Performance Control of Cement Solidified Sulfate Salty Soil[D]. Nanjing: Southeast University, 2020. (in Chinese)

    [12]

    HUNTER D. Lime-induced heave in sulfate-bearing clay soils[J]. Journal of Geotechnical Engineering, 1988, 114(2): 150-167. doi: 10.1061/(ASCE)0733-9410(1988)114:2(150)

    [13]

    MCCARTHY M J, CSETENYI L J, SACHDEVA A, et al. Fly ash influences on sulfate-heave in lime-stabilised soils[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2012, 165(3): 147-158. doi: 10.1680/grim.10.00016

    [14]

    YAO K, WANG W, LI N, et al. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil[J]. Construction and Building Materials, 2019, 206: 160-168. doi: 10.1016/j.conbuildmat.2019.01.221

    [15]

    SONG S Q, JIANG L H, JIANG S B, et al. The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature[J]. Construction and Building Materials, 2018, 164: 663-671. doi: 10.1016/j.conbuildmat.2018.01.011

    [16]

    WANG W, ZHANG C, LI N, et al. Characterisation of nano magnesia–cement-reinforced seashore soft soil by direct-shear test[J]. Marine Georesources & Geotechnology, 2019, 37(8): 989-998.

    [17]

    YI Y, LISKA M, AL-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274. doi: 10.1061/(ASCE)MT.1943-5533.0000806

    [18]

    LI W T, YI Y L, PUPPALA A J. Utilization of carbide slag-activated ground granulated blastfurnace slag to treat gypseous soil[J]. Soils and Foundations, 2019, 59(5): 1496-1507. doi: 10.1016/j.sandf.2019.06.002

    [19] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [20]

    ZHANG T T, VANDEPERRE L J, CHEESEMAN C R. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate[J]. Cement and Concrete Research, 2014, 65: 8-14. doi: 10.1016/j.cemconres.2014.07.001

    [21] 庄心善, 寇强. 海水腐蚀环境下纳米SiO2改良水泥土动应力及微观分析[J]. 水文地质工程地质, 2022, 49(2): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202011.htm

    ZHUANG Xinshan, KOU Qiang. Dynamic stress and microanalyses of the cement-soil modified by nano-SiO2 in the seawater corrosive environment[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 86-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202011.htm

    [22]

    CHAKRABORTY S, PUPPALA A J, BISWAS N. Role of crystalline silica admixture in mitigating ettringite-induced heave in lime-treated sulfate-rich soils[J]. Géotechnique, 2022, 72(5): 438-454. doi: 10.1680/jgeot.20.P.154

    [23]

    XING H F, YANG X M, XU C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology, 2009, 103(1/2): 33-38.

    [24]

    HEKAL E E, KISHAR E, MOSTAFA H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427. doi: 10.1016/S0008-8846(02)00801-3

图(10)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 网络出版日期:  2024-05-05
  • 刊出日期:  2024-08-31

目录

    /

    返回文章
    返回