Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method
-
摘要: 为了提出一种基于非线性增量动力分析(incremental dynamic analysis, IDA)的长线型综合管廊纵向地震性能评价的易损性分析方法,以单舱综合管廊为研究对象建立了简化梁-弹簧模型,合理地考虑了管廊接口的力学性能和管廊-土相互作用,将筛选的17组地震动统一调幅至不同强度水平后作为输入开展一维自由场分析以获取管廊底板位置处的地震动时程,最后开展了考虑地震动行波效应的综合管廊地震响应分析。基于IDA分析结果对地震动强度指标进行优选,最终建立了以管廊底板位置处峰值速度和地表峰值速度为地震动强度指标,以管廊接口张开量为损伤指标的易损性曲线,得到了不同地震烈度水平下综合管廊的失效概率。给出的典型Ⅱ类场地中管廊地震易损性曲线和失效概率可以作为评价该类地下结构抗震性能的有效工具,为长线型综合管廊在不同地震动强度下的损伤预测提供可靠依据。Abstract: This study aims to propose a fragility analysis method for evaluating the longitudinal seismic performance of long-line utility tunnels based on nonlinear incremental dynamic analysis (IDA). To this end, a simplified beam-spring model is established, to reasonably consider the mechanical properties of the joint and the soil-tunnel interaction. A series of 17 sets of ground motion records are selected and uniformly scaled to different intensity levels as the input of one-dimension free filed analyses to obtain the ground motions at the bottom slab of a utility tunnel. Finally, the seismic analysis of the utility tunnel considering wave passage effects is conducted. Based on the IDA results, the optimal intensity measure is selected. With the damage measure of the peak joint opening, the fragility curves of the utility tunnel are established using the peak velocity at the bottom slab of the tunnel and the peak velocity at the ground surface as the intensity measures, respectively. The failure probability of the utility tunnel under different earthquake intensity levels is also obtained. The proposed fragility curves and failure probability of the utility tunnel in typical site Ⅱ can provide an effective tool to estimate the seismic performance of this type of underground structures and a reliable basis for predicting damage under different earthquake intensity levels.
-
-
表 1 土层物理参数表
Table 1 Geotechnical properties of soil layers
土层 土质 土层厚度H/m 密度ρ/(kg·m-3) 剪切波速vs/(m·s-1) 1 人工填土 6.0 1750 180 2 粉质黏土 10.0 1900 250 3 细中砂 10.0 2000 300 4 细粉砂 15.0 2000 320 5 卵石 20.0 2280 500 表 2 钢筋及混凝土材料参数
Table 2 Material parameters of steel rebars and concrete
材料 密度γu/(kg·m-3) 弹性模量Eu/GPa 屈服强度fy/MPa 硬化系数 轴心抗压强度fc0/MPa 轴心抗拉强度ft/MPa 峰值压应变εc0 极限压应变εcu 钢筋 7850 200 426 0.001 — — — — 混凝土 2500 32.5 — — 19.1 2.39 0.0020 0.0038 表 3 轴向和横向土弹簧参数
Table 3 Parameters for longitudinal and transverse soil springs
轴向土弹簧 横向土弹簧 Tu/kN xu/mm kl/(kN·mm-1) Pu/kN yu/mm kt/(kN·mm-1) 960 10.0 96 120960 420.0 288 表 4 地震动记录信息
Table 4 Information of ground motion records
序号 震级 时间 地震名称 台站 PGA/g PGV/(mm·s-1) 1 6.69 1994 Northridge-01 LA - Wonderland Ave 0.10 76 0.16 146 2 7.62 1999 Chi-Chi_ Taiwan CHY102 0.04 68 0.05 56 3 7.62 1999 Chi-Chi_ Taiwan HWA035 0.08 11 0.07 67 4 7.62 1999 Chi-Chi_ Taiwan KAU034 0.06 20 0.01 25 5 7.62 1999 Chi-Chi_ Taiwan TAP086 0.04 97 0.05 80 6 7.62 1999 Chi-Chi_ Taiwan TCU088 0.53 34 0.52 14 7 7.62 1999 Chi-Chi_ Taiwan TTN028 0.02 37 0.02 27 8 6.05 1994 Northridge-02 Lake Hughes #12A 0.01 3 0.02 4 9 5.9 1999 Chi-Chi_ Taiwan-02 ILA015 0.01 8.5 0.01 10 10 6.2 1999 Chi-Chi_ Taiwan-05 HWA002 0.03 31 0.03 34 11 6.3 1999 Chi-Chi_ Taiwan-06 TTN042 0.03 26 0.01 23 12 6.9 2008 Iwate_ Japan IWTH18 0.13 42 0.04 36 13 6.9 2008 Iwate_ Japan MYGH03 0.08 25.5 0.09 27.3 14 5.39 2008 14383980 Mount Wilson Obsv 0.02 9.0 0.02 8.6 15 5.89 2004 Oroville-01 Oroville Seismograph Station 0.09 21 0.07 23 16 5.19 2004 Anza (Horse Canyon)-01 Anza - Pinyon Flat 0.10 20 0.12 50 17 5.45 2007 40204628 Hamilton Field 0.01 4.5 0.01 5 表 5 综合管廊损伤状态定义
Table 5 Definition of damages states for utility tunnel
性能水准 评价指标范围/mm 评价指标中位值/mm 基本完好 dmax≤2 — 轻微破坏 2<dmax≤10.5 6.3 中等破坏 10.5<dmax≤15.0 12.8 严重破坏 dmax>15.0 15.0 表 6 PGV转PGA系数[36]
Table 6 Ratios of PGV to PGA
震级(Mw) 震源-场地距离/km 0~20 20~50 50~100 6.5 940 1020 1090 7.5 1400 1270 1550 8.5 1800 1880 1930 表 7 不同地震动强度下综合管廊的失效概率
Table 7 Failure probabilities of utility tunnel at corresponding seismic intensity levels
地震动强度 PGA/g PGV/(mm·s-1) 场地类别 失效概率/% 基本完好 轻微破坏 中等破坏 严重破坏 多遇地震动 0.20 286 Ⅱ 78.5 20.0 0.8 0.7 设计地震动 0.40 572 Ⅱ 28.9 50.5 7.6 13.0 罕遇地震动 0.62 887 Ⅱ 7.9 40.8 12.2 39.1 -
[1] 钱七虎. 建设城市地下综合管廊, 转变城市发展方式[J]. 隧道建设, 2017, 37(6): 647-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201706001.htm QIAN Qihu. To transform way of urban development by constructing underground utility tunnel[J]. Tunnel Construction, 2017, 37(6): 647-654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201706001.htm
[2] CHEN J, JIANG L Z, LI J, et al. Numerical simulation of shaking table test on utility tunnel under non-uniform earthquake excitation[J]. Tunnelling and Underground Space Technology. 2012, 30: 205-216. doi: 10.1016/j.tust.2012.02.023
[3] 梁建文, 李东桥, 王长祥, 等. 考虑预应力影响的壳-弹簧模型及其在预制地下管廊纵向抗震分析中的应用[J]. 地震工程与工程振动, 2021, 41(4): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202104002.htm LIANG Jianwen, LI Dongjiao, WANG Changxiang, et al. Shell-spring model for longitudinal seismic analysis of precast utility tunnels considering prestress[J]. Earthquake Engineering and Engineering Dynamics. 2021, 41(4): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202104002.htm
[4] TANG G Y, FANG Y M, ZHONG Y, et al. Numerical study on the longitudinal response characteristics of utility tunnel under strong earthquake: a case study[J]. Advances in Civil Engineering, 2020: 8813303.
[5] 钟紫蓝, 申轶尧, 郝亚茹, 等. 基于IDA方法的两层三跨地铁地下结构地震易损性分析[J]. 岩土工程学报, 2020, 42(5): 916-924. doi: 10.11779/CJGE202005014 ZHONG Zilan, SHEN Yiyao, HAO Yaru, et al. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. (in Chinese) doi: 10.11779/CJGE202005014
[6] ZHONG Z L, SHEN Y Y, ZHAO M, et al. Seismic performance evaluation of two-story and three-span subway station in different engineering sites[J]. Journal of Earthquake Engineering, 2021, 26(14): 1-31.
[7] ZHONG Z L, FILIATRAULT A, AREF A. Numerical simulation and seismic performance evaluation of buried pipelines rehabilitated with cured-in-place-pipe liner under seismic wave propagation[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(5): 811-829.
[8] LI J Q, ZHONG Z L, WANG S R, et al. Seismic fragility analysis of water supply pipelines retrofitted with corrosion-protection liner buried in non-uniform site[J]. Soil Dynamics and Earthquake Engineering. 2024, 176: 108333. doi: 10.1016/j.soildyn.2023.108333
[9] 禹海涛, 李心熙, 袁勇, 等. 沉管隧道纵向地震易损性分析方法[J]. 中国公路学报. 2022, 35(10): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htm YU Haitao, LI Xinxi, YUAN Yong, et al. Seismic vulnerability analysis method for longitudinal response of immersed tunnels[J]. China Journal of Highway and Transport, 2022, 35(10): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htm
[10] LONG X H, MA Y T, MIAO Y, et al. Longitudinal seismic fragility analysis of long tunnels under multiple support excitation[J]. Soil Dynamics and Earthquake Engineering. 2023, 164: 107608. doi: 10.1016/j.soildyn.2022.107608
[11] 城市轨道交通结构抗震设计规范: GB50909—2014[S]. 北京: 中国计划出版社, 2014. Code for Seismic Design of Urban Rail Transit Structures: GB50909—2014[S]. Beijing, China Planning Press, 2014. (in Chinese)
[12] SILVIA M, FRANK M, MICHAEL H S, et al. OpenSees command language manual[Z]. Berkeley: Earthquake Engineering Center, University of California, 2009.
[13] 城市综合管廊工程技术规范: GB50838—2015[S]. 北京: 中国计划出版社, 2015. Technical Code for Urban Utility Tunnel Engineering: GB50838—2015[S]. Beijing, China Planning Press, 2015. (in Chinese)
[14] ZHAO J, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. Aci Structural Journal, 2007, 104(2): 133-141.
[15] FILIPPOU F C, POPOV E P, BERTERO V V. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints[R]. Berkeley: Earthquake Engineering Research Center, University of California, 1983.
[16] 冯立, 丁选明, 王成龙, 等. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004021.htm FENG Li, DING Xuanming, WANG Chenglong, et al. Shaking table model test on seismic responses of utility tunnel with joint[J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004021.htm
[17] 胡正一. 非一致地震激励下预制装配式综合管廊结构纵向地震响应及易损性研究[D]. 北京: 北京工业大学, 2022: 11-31. HU Zhengyi. Study on Longitudinal Seismic Response and Vulnerability of Composite Utility Tunnel Structure under Non-Uniform Seismic Excitation[D]. Beijing: Beijing University of Technology, 2022: 11-31. (in Chinese)
[18] 城市轨道交通岩土工程勘察规范: GB50307—2012[S]. 北京: 中国计划出版社, 2014. Code for Geotechnical Investigation of Urban Rail Transit: GB50307—2012[S]. Beijing, China Planning Press, 2012. (in Chinese)
[19] 油气输送管道线路工程抗震技术规范: GB/T50470—2017[S]. 北京: 中国计划出版社, 2017. Seismic Technical Code for Oil and Gas Transmission Pipeline Engineering: GB/T50470—2017[S]. Beijing, China Planning Press, 2017. (in Chinese).
[20] TSINIDIS G. Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research. 2017, 62: 1-22.
[21] FEMA. Seismic Performance Assessment of Buildings: Volume 1 Methodology[R]. Washington D C: Federal Emergency Management Agency, 2012.
[22] FEMA. Seismic Performance Assessment of Buildings Volume 2- Implementation Guide[R]. Washington D C: Federal Emergency Management Agency, 2012.
[23] BULLOCK Z, LIEL A B, PORTER K A, et al. Site-specific liquefaction fragility analysis: cloud, stripe, and incremental approaches[J]. Earthquake Engineering & Structural Dynamics. 2021, 50(9): 2529-2550.
[24] CHEN Z Y, WEI J S. Correlation between ground motion parameters and lining damage indices for mountain tunnels[J]. Natural Hazards. 2013, 65(3): 1683-1702. doi: 10.1007/s11069-012-0437-5
[25] 钟紫蓝, 史跃波, 李锦强, 等. 考虑土体动力特征参数相关性的工程场地随机地震反应分析[J]. 岩土力学, 2022, 43(7): 2015-2024. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm ZHONG Zilan, SHI Yuebo, LI Jinqiang, et al. Stochastic seismic response analysis of engineering site considering correlations of critical soil dynamic parameters[J]. Rock and Soil Mechanics, 2022, 43(7): 2015-2024. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm
[26] 杜修力, 许紫刚, 许成顺, 等. 基于等效线性化的土–地下结构整体动力时程分析方法研究[J]. 岩土工程学报, 2018, 40(12): 2155-2163. doi: 10.11779/CJGE201812001 DU Xiuli, XU Zigang, XU Chengshun, et al. Time-history analysis method for soil-underground structure system based on equivalent linear method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (12): 2155-2162. (in Chinese) doi: 10.11779/CJGE201812001
[27] DU X L, ZHAO M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 937-946. doi: 10.1016/j.soildyn.2010.04.004
[28] VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 491-514.
[29] 城市轨道交通设计规范: DGJ08109—2004[S]. 上海: 同济大学出版社, 2017. Urban Rail Transit Design Standard: DGJ08109—2004[S]. Shanghai: Tongji University Press, 2017. (in Chinese)
[30] 黄忠凯, 张冬梅. 地下结构地震易损性研究进展[J]. 同济大学学报, 2021, 49(1): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htm HUANG Zhongkai, ZHANG Dongmei. Recent advance in seismic fragility research of underground structures[J]. Journal of Tongji University, 2021, 49(01): 49-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htm
[31] ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2012, 35: 1-12. doi: 10.1016/j.soildyn.2011.11.004
[32] 钟紫蓝, 冯立倩, 史跃波, 等. 序列型地震作用下地铁车站损伤分析[J]. 岩土工程学报, 2023, 45(8): 1586-1594. doi: 10.11779/CJGE20220788 ZHONG Zilan, FENG Liqian, SHI Yuebo, et al. Seismic damage assessment of subway station subjected to mainshock aftershock sequences[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1586-1594. (in Chinese)' doi: 10.11779/CJGE20220788
[33] HAZUS-MHMR1. Multi-hazard Loss Estimation Model: Manual Advanced Engineering Building Module Methodology Earthquake Technical and User's[R]. Washington D C: Federal Emergency Management Agency, 2003.
[34] SALMON M, WANG J, JONES D, et al. Fragility formulations for the BART system[C]// Proceedings of the 6th US Conference on Lifeline Earthquake Engineering, TCLEE, Long Beach, 2003.
[35] American Lifelines Alliance. Seismic Fragility Formulations for Water Systems: Part 1 Guideline[M]. Reston: ASCEFEMA, 2005: 1-103.
[36] POWER M, ROSIDI D, KANESHIRO J. Strawman: "Screening, Evaluation, and Retrofit Design of Tunnels" Report Draft[R]. New York: National Centre for Earthquake Engineering Research, 1996.
-
期刊类型引用(11)
1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术
其他类型引用(8)
-
其他相关附件