• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

激光照射岩石热裂特性与裂隙分布研究

王义江, 郁东旭, 孙立鹏, 朱启银, 王建州

王义江, 郁东旭, 孙立鹏, 朱启银, 王建州. 激光照射岩石热裂特性与裂隙分布研究[J]. 岩土工程学报, 2024, 46(9): 1809-1819. DOI: 10.11779/CJGE20230396
引用本文: 王义江, 郁东旭, 孙立鹏, 朱启银, 王建州. 激光照射岩石热裂特性与裂隙分布研究[J]. 岩土工程学报, 2024, 46(9): 1809-1819. DOI: 10.11779/CJGE20230396
WANG Yijiang, YU Dongxu, SUN Lipeng, ZHU Qiyin, WANG Jianzhou. Thermal-breaking characteristics and crack distribution of rock irradiated by laser beams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1809-1819. DOI: 10.11779/CJGE20230396
Citation: WANG Yijiang, YU Dongxu, SUN Lipeng, ZHU Qiyin, WANG Jianzhou. Thermal-breaking characteristics and crack distribution of rock irradiated by laser beams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1809-1819. DOI: 10.11779/CJGE20230396

激光照射岩石热裂特性与裂隙分布研究  English Version

基金项目: 

深地科学与工程云龙湖实验室重点攻关项目 104023006

国家自然科学基金项目 51978653

国家高等学校学科创新引智计划项目 B14021

详细信息
    作者简介:

    王义江(1981—),男,山东潍坊人,博士,副教授,主要从事激光辅助破岩和新能源开发利用等方面的研究工作。E-mail: yjwang@cumt.edu.cn

  • 中图分类号: TU458

Thermal-breaking characteristics and crack distribution of rock irradiated by laser beams

  • 摘要: 激光辅助破岩是一种非接触式破岩技术,破岩效果主要受激光功率、照射时间和离焦距离等参数影响。选择石灰岩、砂岩和花岗岩3类岩石,开展了不同照射参数的破岩试验,分析了温度、射孔参数、比能、热裂效能、裂隙分布、矿物组分和微观结构等变化规律。结果表明,激光照射下3类岩石表面温度均超过2000℃、温度梯度最高可达1500℃/mm,相同位置处花岗岩表面温度和温度梯度最高、砂岩次之、石灰岩最低;3类岩石射孔直径、射孔深度和射孔速率均与照射参数密切相关,砂岩、石灰岩和花岗岩最大射孔速率分别为3.18,2.68,0.8 mm/s。相同照射参数下,比能较热裂效能高1~2个数量级,3类岩石比能排序为:花岗岩 > 石灰岩 > 砂岩。照射后岩样均存在数条主裂隙,沿径向延伸至试样边缘,石灰岩和花岗岩次生裂隙发育,砂岩未发现明显次生裂隙。照射后岩石矿物衍射强度和微观结构发生显著改变。
    Abstract: The laser-assisted rock breaking is a non-contact technology employed for the rock fragmentation, with its efficiency contingent upon the laser power, irradiation time and defocusing distance. To explore the effects of various irradiation parameters, the rock-breaking tests are conducted on three distinct rock types, including limestone, sandstone and granite. The temperature field, perforation parameters, specific energy, thermal-cracking energy, crack distribution, mineral composition and microstructural characteristics are studied. The results demonstrate that the rock surface temperature subjected to laser irradiation experiences a substantial increase, with the maximum temperature and temperature gradient of 2000 oC and 1500 oC/mm, respectively. The granite sample exhibits the highest surface temperature and temperature gradient, followed by sandstone, and the limestone displays the lowest values. The perforation diameter, depth and speed of rocks are closely associated with the corresponding irradiation parameters. The sandstone, limestone and granite exhibit the maximum perforation speeds of 3.18 mm/s, 2.68 mm/s and 0.8 mm/s, respectively. The relationship between specific energy and irradiation parameters mirrors that of thermal-cracking energy under the same irradiation parameters. However, the specific energy values are approximately 1-2 orders of magnitude higher than the corresponding thermal-cracking energy values. The specific energy ranking for the three rock types is as follows: granite > sandstone > limestone. The rock samples exhibit a notable presence of radial cracks that extend to the edges. The limestone and granite samples display extensive development of the secondary cracks, whereas the sandstone shows no significant presence of the secondary cracks. The irradiated rock samples demonstrat evident alterations in both diffraction intensity and microstructures when compared with their corresponding original samples.
  • 图  1   主要试验设备

    Figure  1.   Main test instruments

    图  2   不同辐射参数下岩石表面径向温度

    Figure  2.   Radial temperatures of rock surfaces under different irradiation parameters

    图  3   不同照射参数下射孔直径

    Figure  3.   Hole diameters under different irradiation parameters

    图  4   不同照射参数下射孔深度与射孔速率

    Figure  4.   Hole depths and rates of perforation under different irradiation parameters

    图  5   不同照射参数下比能

    Figure  5.   Specific energies under different irradiation parameters

    图  6   径向及轴向断层扫描图

    Figure  6.   Radial and axial computed tomography images

    图  7   岩样及裂隙三维重构

    Figure  7.   Three-dimensional reconstruction for samples and cracks

    图  8   XRD结果

    Figure  8.   XRD results

    图  9   SEM微观图像

    Figure  9.   SEM microscope images

    表  1   岩样物性参数

    Table  1   Physical parameters of rock samples

    物性
    参数
    密度/(kg·m-3) 比热容/(J·kg-1·K-1) 导热系数/(W·m-1·K-1) 含水率/%
    石灰岩 2714 720 3.06 0.46
    砂岩 2661 781 1.78 0.40
    花岗岩 2630 714 2.60 0.15
    下载: 导出CSV

    表  2   XRF结果

    Table  2   XRF results

    化学组份 Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 CO2 其它
    石灰岩/% 0.13 2.30 1.17 6.21 0.08 51.23 0.37 38.39 0.12
    砂岩/% 3.99 6.16 16.10 50.35 1.25 7.87 11.96 2.32
    花岗岩/% 3.53 0.69 13.91 68.55 5.16 1.63 2.46 4.07
    下载: 导出CSV

    表  3   试验参数

    Table  3   Test parameters

    参数设置 激光功率/W 照射时间/s 离焦距离/cm
    400/600/800/1000 20 6
    1000 5/10/15/20 6
    1000 20 6/8/10/12
    说明:改变激光功率和离焦距离时,花岗岩试样照射时间均为30 s。
    下载: 导出CSV

    表  4   测试精度和不确定度

    Table  4   Test accuracies and uncertainties

    变量 温度/℃ 质量/g 长度/mm 体积/cm3 ES, ET, C/(kJ·cm-3)
    测试精度 ±2% ±0.01 ±0.02
    不确定度 ±2% 2%~5% 0.11% 0.08% 2%~5%
    下载: 导出CSV

    表  5   热裂效能

    Table  5   Thermal-cracking energies

    照射参数 热裂效能/(kJ·cm-3)
    石灰岩 砂岩* 花岗岩
    激光功率/W 400 0.122 1.51 1.628
    600 0.103 1.36 1.450
    800 0.090 1.08 1.138
    1000 0.078 0.68 1.072
    照射时间/s 5 1.51
    10 0.039 1.65 0.459
    15 0.043 2.04 0.570
    20 0.078 3.18 0.838
    离焦距离/cm 6 0.078 0.67 0.860
    8 0.092 1.02 1.072
    10 0.097 1.26 2.490
    12 0.137 1.51 2.680
    注:*表中砂岩热裂效能等于比能。
    下载: 导出CSV
  • [1] 刘晓丽, 孙欢, 董勤喜, 等. 深埋引水隧洞极硬岩TBM掘进及辅助破岩技术[J]. 清华大学学报(自然科学版), 2022, 62(8): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202208005.htm

    LIU Xiaoli, SUN Huan, DONG Qinxi, et al. Extremely hard rock mass excavation using rock breakdown methods to assist TBM in a deep, long diversion tunnel in the Qinling Mountains[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(8): 1292-1301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202208005.htm

    [2]

    WANG Y J, SHI Y L, JIANG J Y, et al. Experimental study on modified specific energy, temperature field and mechanical properties of Xuzhou limestone irradiated by fiber laser[J]. Heat and Mass Transfer, 2020, 56(1): 161-173. doi: 10.1007/s00231-019-02682-2

    [3] 卢高明, 李元辉, FERRI Hassani, 等. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8): 1497-1506. doi: 10.11779/CJGE201608018

    LU Gaoming, LI Yuanhui, FERRI HASSANI, et al. Review of theoretical and experimental studies on mechanical rock fragmentationusing microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506. (in Chinese) doi: 10.11779/CJGE201608018

    [4]

    LI X, WANG S, XIA K, et al. Dynamic tensile response of a microwave damaged granitic rock[J]. Experimental Mechanics, 2021, 61(3): 461-468. doi: 10.1007/s11340-020-00677-3

    [5]

    WANG Y J, JIANG J Y, DARKWA J, et al. Experimental study of thermal fracturing of Hot Dry Rock irradiated by moving laser beam: temperature, efficiency and porosity[J]. Renewable Energy, 2020, 160: 803-816. doi: 10.1016/j.renene.2020.06.138

    [6] 周新超, 马小晶, 廖翔云, 等. 磨料水射流冲击孔隙岩体的SPH模拟研究[J]. 岩土工程学报, 2022, 44(4): 731-739. doi: 10.11779/CJGE202204016

    ZHOU Xinchao, MA Xiaojing, LIAO Xiangyun, et al. Numerical simulation of abrasive water jet impacting porous rock based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 731-739. (in Chinese) doi: 10.11779/CJGE202204016

    [7] 官兵, 李士斌, 张立刚, 等. 激光破岩技术的研究现状及进展[J]. 中国光学, 2020, 13(2): 229-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202002004.htm

    GUAN Bing, LI Shibin, ZHANG Ligang, et al. Research progress on rock removal by laser technology[J]. Chinese Optics, 2020, 13(2): 229-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202002004.htm

    [8]

    KUANG L F, SUN L P, YU D X, et al. Experimental investigation on compressive strength, ultrasonic characteristic and cracks distribution of granite rock irradiated by a moving laser beam[J]. Applied Sciences, 2022, 12(20): 10681. doi: 10.3390/app122010681

    [9]

    RUI F X, ZHAO G F. Experimental and numerical investigation of laser-induced rock damage and the implications for laser-assisted rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139: 104653. doi: 10.1016/j.ijrmms.2021.104653

    [10]

    YANG X F, ZHOU J H, ZHOU X, et al. Investigation on the rock temperature in fiber laser perforating[J]. Optik, 2020, 219: 165104. doi: 10.1016/j.ijleo.2020.165104

    [11]

    CHEN K, HUANG Z Q, DENG R, et al. Research on the temperature and stress fields of elliptical laser irradiated sandstone, and drilling with the elliptical laser-assisted mechanical bit[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110147. doi: 10.1016/j.petrol.2022.110147

    [12]

    HU M X, BAI Y, CHEN H W, et al. Engineering characteristics of laser perforation with a high power fiber laser in oil and gas wells[J]. Infrared Physics & Technology, 2018, 92: 103-108.

    [13]

    LI M Y, HAN B, ZHANG Q, et al. Investigation on rock breaking for sandstone with high power density laser beam[J]. Optik, 2019, 180: 635-647. doi: 10.1016/j.ijleo.2018.10.059

    [14]

    LI M Y, HAN B, ZHANG S Y, et al. Investigation into laser perforation of rock for petroleum exploitation[J]. Lasers in Engineering, 2018, 41(1-3): 73-99.

    [15]

    GUO C G, SUN Y, YUE H T, et al. Experimental research on laser thermal rock breaking and optimization of the process parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105251. doi: 10.1016/j.ijrmms.2022.105251

    [16]

    LYU Z H, SONG X Z, LI G S, et al. Investigations on thermal spallation drilling performance using the specific energy method[J]. Journal of Natural Gas Science and Engineering, 2018, 54: 216-223. doi: 10.1016/j.jngse.2018.04.009

    [17] 王义江, 郁东旭, 王泽桂, 等. 激光照射花岗岩热裂规律及力学性质试验研究[J]. 中国矿业大学学报, 2023, 52(4): 701-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202304006.htm

    WANG Yijiang, YU Dongxu, WANG Zegui, et al. Experimental research on thermal cracking and mechanical properties of granite irradiated by laser beam[J]. Journal of China University of Mining & Technology, 2023, 52(4): 701-712. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202304006.htm

    [18] 徐小丽, 高峰, 沈晓明, 等. 高温后花岗岩力学性质及微孔隙结构特征研究[J]. 岩土力学, 2010, 31(6): 1752-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201006012.htm

    XU Xiaoli, GAO Feng, SHEN Xiaoming, et al. Research on mechanical characteristics and micropore structure of granite under high-temperature[J]. Rock and Soil Mechanics, 2010, 31(6): 1752-1758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201006012.htm

    [19] 孙强, 张志镇, 薛雷, 等. 岩石高温相变与物理力学性质变化[J]. 岩石力学与工程学报, 2013, 32(5): 935-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305011.htm

    SUN Qiang, ZHANG Zhizhen, XUE Lei, et al. Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 935-942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305011.htm

    [20]

    LI M Y, HAN B, ZHANG S Y, et al. Numerical simulation and experimental investigation on fracture mechanism of granite by laser irradiation[J]. Optics & Laser Technology, 2018, 106: 52-60.

    [21]

    YANG S Q, RANJITH P G, JING H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197. doi: 10.1016/j.geothermics.2016.09.008

    [22] 郭辰光, 孙瑜, 岳海涛, 等. 激光辐照热裂破岩规律及力学性能[J]. 煤炭学报, 2022, 47(4): 1734-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm

    GUO Chenguang, SUN Yu, YUE Haitao, et al. Law and mechanics of thermal cracking of rock by laser irradiation[J]. Journal of China Coal Society, 2022, 47(4): 1734-1742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm

    [23]

    SOUSA L, MENNINGEN J, LÓPEZ-DONCEL R, et al. Petrophysical properties of limestones: influence on behaviour under different environmental conditions and applications[J]. Environmental Earth Sciences, 2021, 80(24): 814. doi: 10.1007/s12665-021-10064-3

    [24] 陈国庆, 李阳, 陈亚烽, 等. 不同岩性的裂隙岩石破裂热–声敏感性分析[J]. 岩石力学与工程学报, 2022, 41(10): 1945-1957. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210001.htm

    CHEN Guoqing, LI Yang, CHEN Yafeng, et al. Thermal-acoustic sensitivity analysis of fractured rock with different lithologies[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1945-1957. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210001.htm

图(9)  /  表(5)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  59
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-08-31

目录

    /

    返回文章
    返回