• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

利用原位测试试验确定黄河口潮滩粉质土固结状态研究

张建民, 单红仙, 王振强, 王志才, 王津津

张建民, 单红仙, 王振强, 王志才, 王津津. 利用原位测试试验确定黄河口潮滩粉质土固结状态研究[J]. 岩土工程学报, 2024, 46(9): 1994-2001. DOI: 10.11779/CJGE20230387
引用本文: 张建民, 单红仙, 王振强, 王志才, 王津津. 利用原位测试试验确定黄河口潮滩粉质土固结状态研究[J]. 岩土工程学报, 2024, 46(9): 1994-2001. DOI: 10.11779/CJGE20230387
ZHANG Jianmin, SHAN Hongxian, WANG Zhenqiang, WANG Zhicai, WANG Jinjin. Consolidation states of silty soils in tidal flats of Yellow River estuary by in-situ testing[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1994-2001. DOI: 10.11779/CJGE20230387
Citation: ZHANG Jianmin, SHAN Hongxian, WANG Zhenqiang, WANG Zhicai, WANG Jinjin. Consolidation states of silty soils in tidal flats of Yellow River estuary by in-situ testing[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1994-2001. DOI: 10.11779/CJGE20230387

利用原位测试试验确定黄河口潮滩粉质土固结状态研究  English Version

基金项目: 

国家自然科学基金项目 40172088

国家自然科学基金项目 40472137

详细信息
    作者简介:

    张建民(1971—),男,硕士,高级工程师,主要从事工程地震、岩土工程等方面的研究工作。E-mail: jianmin_1991@s163.com

  • 中图分类号: TU441

Consolidation states of silty soils in tidal flats of Yellow River estuary by in-situ testing

  • 摘要: 黄河口泥沙快速堆积在河口一带,在波浪和潮波作用下,表层沉积物处于超固结状态,但试验中发现采用Casagrande作图法求取的黄河口粉质土先期固结压力往往偏大。为了了解黄河口粉质土固结状态、合理估算先期固结压力,在黄河口刁口流路三角洲叶瓣潮坪上,现场取土在试坑内配置了模拟黄河口快速沉积形成的流体状堆积物,利用原位测试手段(静力触探、十字板剪切试验和孔隙水压力测试),并在长期观测基础上,对比研究了1.0 m深度范围内试坑和潮滩原状土体固结过程及固结状态。研究发现:黄河口快速沉积粉质土在自重作用下固结很快,固结完成后,土体强度随时间发展呈现不均匀增长,沿深度方向从上到下出现高-低-次高不均匀固结特征;历经16个月后,试坑和潮滩原状土体先期固结压力进一步提高,固结不均匀性和结构性不断增强。从试坑土体自重固结完成后的实际固结状态及原状土体物理性质指标来看,Casagrande作图法结果偏大,采用静力触探比贯入阻力法、十字板剪切试验不排水抗剪强度经验公式法估算的试坑和潮滩原状土体先期固结压力数值更为可靠;同时该方法为土体固结状态研究提供了新途径。
    Abstract: The sediments in the Yellow River estuary rapidly deposit in the estuarine area. Under the action of waves and tidal waves, the surface sediments are in an over-consolidated state. However, it is found that the pre-consolidation pressure of silty soils in the Yellow River estuary calculated by the Casagrande graphic method is usually too high. In order to find out the consolidation states and estimate the pre-consolidation pressure of silty soils reasonably, a series of tests are conducted on the tide flat of Diaokou delta lobe. The fluid sediments imitating the rapidly deposited seabed silts are made in situ, and then promptly filled into a one-meter deep pit excavated at the tide flat. Through the in-situ testing methods such as the static cone penetration tests, field vane shear tests and pore water pressure tests, on the basis of long-term observation, the consolidation processes and states of the undisturbed soils of the tidal flat and testing pit soils are studied in the range of 1.0 m in depth. It is shown that the consolidation speed of the rapidly deposited pit silty soils are very fast under the effective gravity stress, after consolidation compression is completed, the strength of such soils still increase unevenly with the development of time, exhibiting high-low-subhigh non-uniform consolidation characteristics along the depth. After 16 months, the pre-consolidation pressures of the undisturbed soils and testing pit soils further increase, the characteristics of non-uniform consolidation and structure are enhanced continuously. According to the actual consolidation states of the testing pit soils after the self-weight compression consolidation is completed and the indexes of physical and mechanical properties of the undisturbed soils, the results of the Casagrande graphic method are too great, so it is more reliable to estimate the pre-consolidation pressures of the undisturbed soils and testing pit soils by using the static cone penetration tests and field vane shear tests. Meantime such in-situ testing methods provide a new way to determine the consolidation states of soils.
  • 图  6   试坑及原状土体比贯入阻力Ps沿深度变化曲线

    Figure  6.   Curves of Ps between testing pit soils and undisturbed soils along depth

    图  1   一层饱和均质正常固结土体固结压力与比贯入阻力图

    Figure  1.   Consolidation pressures and Ps of one-layer saturated homogeneous soil

    图  2   一层饱和均质超固结土体固结压力与比贯入阻力图

    Figure  2.   Over-consolidation pressures and Ps of one-layer saturated homogeneous soil

    图  3   二层饱和均质正常固结土体固结压力与比贯入阻力图

    Figure  3.   Consolidation pressures and Ps of two-layers saturated homogeneous soils

    图  4   研究区位置及试验现场布置示意图

    Figure  4.   Location and arrangments of research area

    图  5   不同深度处孔隙水压力时程曲线

    Figure  5.   Time-history curves of pore water pressure

    图  7   试坑及原状土体不排水抗剪强度沿深度变化曲线

    Figure  7.   Curves of Cu between testing pit soils and undisturbed soils along depth

    图  8   试坑及原状土体灵敏度变化曲线

    Figure  8.   Curve of St between testing pit soils and undisturbed soils along depth

    表  1   原状土样与试坑土样物理力学性质指标表

    Table  1   Mechanical properties of testing pit soils and undisturbed soils

    试样 深度/m w/
    %
    ρ/
    (g·cm-3)
    e Sr Ip IL α1-2/
    MPa-1
    Es1-2/
    MPa
    pcq/
    kPa
    OCR
    原状样 0.0~0.3 24.8 1.94 0.737 90 7.7 0.59 0.147 11.88 163.2 115.7
    0.3~0.6 25.3 1.96 0.732 93 8.0 0.33 0.236 7.62 135.4 31.8
    0.6~1.0 26.8 1.95 0.762 96 7.7 0.26 0.171 10.29 175.8 23.1
    试坑样 0.0~0.3 26.4 1.92 0.784 92 8.0 0.91 0.206 8.68 75.8 54.9
    0.3~0.6 28.0 1.91 0.806 94 7.5 0.88 0.251 7.19 51.9 12.6
    0.6~1.0 29.1 1.92 0.793 98 7.8 0.59 0.218 8.24 65.5 8.9
    下载: 导出CSV

    表  2   用十字板不排水抗剪强度法估算试坑和原状土体先期固结压力和超固结比

    Table  2   Estimated pre-consolidation pressures and overconsolidation ratios of tesing pit soils and undisturbed soils with Cu by FVST

    深度/
    cm
    试坑土体 原状土体
    4月15日 16个月后 4月15日 16个月后
    pc/kPa OCR pc/kPa OCR pc/kPa OCR pc/kPa OCR
    30 6.76 2.39 16.52 5.92 16.89 6.05 37.14 13.31
    60 6.90 1.24 19.78 3.54 32.24 5.78 60.59 10.86
    90 11.29 1.35 28.65 3.42 34.58 4.13 53.15 6.35
    下载: 导出CSV

    表  3   用十字板不排水抗剪强度法估算重塑试坑和原状土体固结压力和超固结比

    Table  3   Estimated consolidation pressures and overconsolidation ratios of remoded soils with Cu by FVST

    深度/
    cm
    试坑土体 原状土体
    4月15日 16个月后 4月15日 16个月后
    pcr/kPa OCR pcr/kPa OCR pcr/kPa OCR pcr/kPa OCR
    30 5.54 1.98 6.53 2.34 4.66 1.67 6.21 2.22
    60 5.61 1.00 5.77 1.03 7.85 1.46 11.93 2.14
    90 10.26 1.22 11.33 1.35 9.14 1.09 10.72 1.28
    下载: 导出CSV

    表  4   用十字板不排水抗剪强度法估算试坑和原状土体结构强度

    Table  4   Estimated structural strengths of testing pit soils and undisturbed soils with Cu by FVST

    深度/
    cm
    试坑土体 原状土体
    4月15日 16个月后 4月15日 16个月后
    ps/kPa pc/pcr ps/kPa pc/pcr ps/kPa pc/pcr ps/kPa pc/pcr
    30 1.22 1.22 9.99 2.53 12.23 3.62 30.93 5.98
    60 1.29 1.23 14.01 3.42 24.42 4.11 48.66 5.08
    90 1.03 1.10 17.32 2.53 25.44 3.78 42.43 4.96
    下载: 导出CSV

    表  5   用静力触探比贯入阻力法估算试坑和原状土体固结状态

    Table  5   Estimated consolidation states of testing pit soils and undisturbed soils with Ps by SPT

    深度/
    cm
    试坑土体 原状土体
    4月15日 16个月后 4月15日 16个月后
    pc/kPa OCR pc/kPa OCR pc/kPa OCR pc/kPa OCR
    10 3.78 4.06 22.95 24.68 35.55 38.23 47.26 50.82
    20 5.92 3.18 19.51 10.49 28.89 15.53 43.20 23.23
    30 4.79 1.72 20.53 7.36 33.73 12.09 25.44 9.12
    40 4.85 1.30 11.84 3.18 12.52 3.37 10.66 2.87
    50 6.20 1.33 10.15 2.18 6.87 1.48 8.40 1.81
    60 6.65 1.19 15.79 2.83 9.90 1.77 13.20 2.37
    70 7.84 1.20 17.09 2.62 16.16 2.48 21.09 3.24
    80 9.81 1.32 21.26 2.86 21.82 2.93 24.93 3.35
    90 27.63 3.30 22.62 2.70 36.88 4.41
    下载: 导出CSV
  • [1] 钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996.

    QIAN Jiahuan, YIN Zongze. Geotechnical Principle and Calculation[M]. 2nd ed. Beijing: China Water & Power Press, 1996. (in Chinese)

    [2]

    BUTTERFIELD R. A natural compression law for soils[J]. Géotechnique, 1979, 29(4): 469-480. doi: 10.1680/geot.1979.29.4.469

    [3] 姜安龙, 赵春风, 高大钊. 确定先期固结压力的数学模型法[J]. 岩土力学, 2003, 24(2): 292-295. doi: 10.3969/j.issn.1000-7598.2003.02.031

    JIANG Anlong, ZHAO Chunfeng, GAO Dazhao. Mathematical model method of determining preconsolidation pressure[J]. Rock and Soil Mechanics, 2003, 24(2): 292-295. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.02.031

    [4] 邹越强, 王建斌, 邵孟新. 推求先期固结压力的逐步逼近法[J]. 岩土力学, 1994, 16(3): 548-561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC403.005.htm

    ZOU Yueqiang, WANG Jianbing, SHAO Mengxin. Ascertaining precon- solidation pressure by iteration[J]. Rock and Soil Mechanics, 1994, 16(3): 548-561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC403.005.htm

    [5] 顾小芸. 海洋土先期固结压力的综合方法[C]//中国土木工程学会第五届全国土力学及基础工程学术会议论文选集, 厦门, 1987.

    GU Xiaoyun. Synthetically determinate methods of pre-consolidation pressure of marine soils[C]// Proceedings of The Fifth National Conference on Soil Mechanics and Foundation Engineering, China Civil Engineering Society, Xiamen, 1987. (in Chinese)

    [6]

    YAMAMOTO T. Wave-induced pore pressures and effective stresses in inhomogeneous seabed foundations[J]. Ocean Engineering, 1981, 8(1): 1-16. doi: 10.1016/0029-8018(81)90002-0

    [7]

    JENG D S, LEE T L. Dynamic response of porous seabed to ocean waves[J]. Computers and Geotechnics, 2001, 28(2): 99-128. doi: 10.1016/S0266-352X(00)00026-4

    [8] 冯秀丽, 沈渭铨, 杨荣民, 等. 现代黄河口区沉积环境与沉积物工程性质的关系[J]. 青岛海洋大学学报, 1994a: 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY4S3.003.htm

    FENG Xiuli, SHEN Weiquan, YANG Rongmin, et al. Relation between the geotecnial character of seabed sediment and the sedimentary enviroment of the modern Huanghe estuary area[J]. Journal of Ocean University of Qingdao, 1994a: 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY4S3.003.htm

    [9] 张民生, 刘红军, 李晓东, 等. 波浪作用下黄河口粉土液化与"铁板砂" 形成机制的模拟试验研究[J]. 岩土力学, 2009, 30(11): 3347-3351, 3356. doi: 10.3969/j.issn.1000-7598.2009.11.022

    ZHANG Minsheng, LIU Hongjun, LI Xiaodong, et al. Study of liquefaction of silty soil and mechanism of development of hard layer under wave actions at Yellow River Estuary[J]. Rock and Soil Mechanics, 2009, 30(11): 3347-3351, 3356. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.022

    [10] 冷浩, 胡瑞庚, 刘红军, 等. 波流作用下黄河三角洲硬壳层液化渗流形成机制研究[J]. 工程地质学报, 2021, 29(6): 1779-1787. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106012.htm

    LENG Hao, HU Ruigeng, LIU Hongjun, et al. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numeri-cal simulation[J]. Journal of Engineering Geology, 2021, 29(6): 1779-1787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106012.htm

    [11] 苏思杨, 孔德琼, 吴雷晔, 等. 波浪作用下海床液化-重固结移动边界分析模型及离心模型试验验证[J]. 岩土工程学报, 2022, 44(6): 1156-1165. doi: 10.11779/CJGE202206021

    SU Siyang, KONG Deqiong, WU Leiye, et al. Development and validation of a modified moving boundary model to simulate liquefaction- solidification behaviors of seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1156-1165. (in Chinese) doi: 10.11779/CJGE202206021

    [12] 单红仙, 张建民, 贾永刚, 等. 黄河口快速沉积海床土固结过程研究[J]. 岩石力学与工程学报, 2006, 25(8): 1676-1682. doi: 10.3321/j.issn:1000-6915.2006.08.024

    SHAN Hongxian, ZHANG Jianmin, JIA Yonggang, et al. Study on consolidation process of rapidly deposited seabed soils in Yellow River Estuary[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8): 1676-1682. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.08.024

    [13] 杨秀娟, 贾永刚. 黄河口入海泥沙沉积固结过程长期现场观测研究[J]. 岩土工程学报, 2013, 35(4): 671-678. http://cge.nhri.cn/article/id/15019

    YANG Xiujuan, JIA Yonggang. Long-term field observation of sediment consolidation process in Yellow River Delta, China[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 671-678. (in Chinese) http://cge.nhri.cn/article/id/15019

    [14] 张建民, 单红仙, 贾永刚, 等. 波浪和潮波作用下黄河口快速沉积海床土非均匀固结试验研究[J]. 岩土力学, 2007, 28(7): 1369-1375, 1380. doi: 10.3969/j.issn.1000-7598.2007.07.016

    ZHANG Jianmin, SHAN Hongxian, JIA Yonggang, et al. An experimental study of nonuniform consolidation of rapid sediment seabed soils at Yellow River mouth subjected to wave and tide wave loading[J]. Rock and Soil Mechanics, 2007, 28(7): 1369-1375, 1380. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.07.016

    [15] 冯秀丽, 周松望, 林霖, 等. 现代黄河三角洲粉土触变性研究及其应用[J]. 中国海洋大学学报(自然科学版), 2004, 34(6): 1053-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200406026.htm

    FENG Xiuli, ZHOU Songwang, LIN Lin, et al. The thixotropy of silt in Huanghe delta[J]. Periodical of Ocean University of China, 2004, 34(6): 1053-1056. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200406026.htm

    [16]

    PRIOR D B, SUHAYDA J N, et al. Storm wave reactivation of submarine landslide[J]. Nature, 1989(341): 159-164.

    [17]

    FELLENIUS B H. Discussion on soil properties[C]// Proceedings of the 1st ICSMFE, Cambridge: Harvard University, MA, 1936.

    [18]

    SKEMPTON A W. The planning and design of the new Hong Kong airport[C]// Proceedings of the Institution of Civil Engineers, London, 1957: 305-307.

    [19]

    LADD C C, FOOTT R, ISHIHARA K, et al. Stress deformation and strength characteristics[C]// Proceedings of the 9th ICSMFE, Tokyo, 1977: 421-494.

    [20] 简文彬, 吴振祥, 童文德, 等. 静力触探判别软土固结历史[J]. 岩石力学与工程学报, 2005, 24(12): 2166-2169. doi: 10.3321/j.issn:1000-6915.2005.12.027

    JIAN Wenbin, WU Zhenxiang, TONG Wende, et al. Consolidation state of soft soil differentiated by static cone sounding[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2166-2169. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.12.027

    [21] 臧启运. 黄河三角洲近岸泥砂[M]. 北京: 海洋出版社, 1996.

    ZANG Qiyun. Alongshore Mud and Sand of Yellow River Delta[M]. Beijing: Ocean Press, 1996. (in Chinese)

    [22] 龚晓南, 熊传祥, 项可祥, 等. 黏土结构性对其力学性质的影响及形成原因分析[J]. 水利学报, 2000, 31(10): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200010006.htm

    GONG Xiaonan, XIONG Chuanxiang, XIANG Kexiang, et al. The formation of clay structure and its influence on mechanical characteristics of clay[J]. Journal of Hydraulic Engineering, 2000, 31(10): 43-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200010006.htm

    [23] 孟高头. 土体原位测试机理、方法及其工程应用[M]. 北京: 地质出版社, 1997.

    MENG Gaotou. Mechanism, Method and Engineering Application of Soil in-situ Testing[M]. Beijing: Geological Publishing House, 1997. (in Chinese)

    [24] 王俊超. 黄河口潮坪沉积物对水动力作用研究[D]. 青岛: 中国海洋大学, 2004.

    WANG Junchao. Research of Sediment Response to the Hydrodynamic Action on the Tide Flat of Yellow River[D]. Qingdao: Ocean University of China, 2004. (in Chinese)

  • 期刊类型引用(2)

    1. 吴雄华,邹振杰. 生物炭-水泥固化膨胀土物理力学特性及其影响机理研究. 公路. 2025(04): 409-416 . 百度学术
    2. 胡波,李浩洋,童军,王卫,查恒,夏锐. 磷石膏改性膨胀土工程特性演变规律试验研究. 人民长江. 2025(05): 156-161 . 百度学术

    其他类型引用(4)

图(8)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-05-04
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-08-31

目录

    /

    返回文章
    返回