In-place stability of submarine pipelines based on water-soil-pipeline coupling analysis platform
-
摘要: 海底管道是深海油气工程中的关键组成部分,其在位稳定性受波流荷载、周围土体抗力及管道自身特性等因素的影响,现有分析方法难以准确评估水-土-管耦合作用下的海底管道在位稳定性。为此,首先利用FORTRAN编程语言分别建立了管-水作用分析程序与管-土作用分析程序。管-水作用分析程序采用傅里叶分析法计算作用在管道上的水动力荷载,并依据管道位移变化对该荷载进行实时修正;管-土作用分析程序基于已有的管土相互作用模型,计算管道在发生运动时受到的水平向土抗力。随后,基于有限元分析软件ABAQUS中的DLOAD与UEL子程序将上述程序进行耦合,最终形成用以分析海底管道在位稳定性的水-土-管耦合分析平台。利用该计算分析平台,综合考虑海况条件、土体性质及管道外形参数等因素对管道在位稳定性的影响,为实际工程中海底管道的在位稳定性分析提供了参考。Abstract: The submarine pipeline is a key component of deep-sea oil and gas engineering, and the in-place stability of pipelines is affected by ocean waves and hydrodynamic loads, soil resistance and pipeline characteristics. The existing analytical methods are difficult to accurately evaluate the in-place stability of submarine pipelines under water-soil-pipe coupling. For this reason, a pipeline-water interaction analysis program and a pipeline-soil interaction analysis program are established using the FORTRAN programming language firstly. The former uses the Fourier analysis to calculate the hydrodynamic loads acting on the pipelines, and corrects the loads based on displacement change of the pipelines in real time. The latter is based on the existing pipeline-soil interaction model to calculate the horizontal soil resistance of the pipelines during movement. Subsequently, the above programs are coupled based on the DLOAD and UEL subroutines in the finite element analysis software ABAQUS to ultimately form a water-soil-pipeline coupling analysis platform for analyzing the in-place stability of the submarine pipelines. The effects of sea conditions, soil properties and pipeline shape parameters on the in-place stability of the pipelines are comprehensively considered in the platform, providing a reference for the in-place stability analysis of the submarine pipelines in practical projects.
-
Keywords:
- submarine pipeline /
- computing platform /
- stability analysis /
- hydrodynamics /
- pipe-soil interaction
-
-
表 1 海床为砂土时对应的计算公式
Table 1 Corresponding formulae for seabed of sandy soil
参数 公式 编号 峰值土阻力 Fr2={γ′sD2(5.0−0.15κi)(z2D)1.25 (κi⩽20) 2.0γ′sD2(z2D)1.25 (κi>20) (9) y1对应土阻力 Fr1=0.3Fr2 (10) y3对应土阻力 Fr3={γ′sD2(5.0−0.15κi)(z3D)1.25 (κi⩽20) 2.0γ′sD2(z3D)1.25 (κi>20) (11) 初始埋深 zi=0.037D(γ′sD2Ws)−0.67 (12) y2对应埋深 z2=0.23D[Eγ′sD3κi−1(yD)−0.5]0.31+zi (13) y3对应埋深 z3={[0.82−3.2(z2D)]z2(z2D⩽0.1)0.5z2(z2D>0.1) (14) 土体刚度参数 κi=γ′sD2Ws−FL (15) 能量 E(t)=∫t0Frds (16) 表 2 海床为黏土对应的计算公式
Table 2 Corresponding formulae for seabed clay soil
参数 公式 编号 峰值土阻力 Fr2=4.13suDG−0.392(z2D)1.31 (17) y1对应土阻力 Fr2=4.13suDG−0.392(ziD)1.31 (18) y3对应土阻力 Fr3=4.13suDG−0.392(z3D)1.31 (19) 初始埋深 zi=0.0071D(SG0.3)3.2+
0.062D(SG0.3)0.7(20) y2对应埋深 z2=0.296ξ0.32S0.637D (21) y3对应埋深 z3=0.489SG0.54 (22) 能量 E(t)=∫t0Frds (23) 其他参数 S=Ws−FLDsu (24) G=suDγs (25) ξ=EsuD2 (26) 表 3 波流参数
Table 3 Parameters of waves and currents
波浪类型 波谱 波速/
(m·s-1)波浪周期/
s水流流速/
(m·s-1)不规则波 Jonswap 2.7 4.3 0 表 4 管土参数
Table 4 Parameters of pipelines and soil
管道直径/m 管长/m 管道浮重度/kN·m-3) 土的类型 土不排水强度/kPa 管土摩擦系数 1.0 1250 10.0 黏土 3 0.6 表 5 南海海况参数
Table 5 Sea state parameters in South China Sea
类型 环境参数 一年一遇 百年一遇 波浪 有效波高/m 7.3 12.3 有效周期/s 11.3 14.5 洋流 洋流流速/(m·s-1) 1.13 2.33 -
[1] RANDOLPH M F, WHITE D. Pipeline embedment in deep water: processes and quantitative assessment[C]//Offshore Technology Conference, Houston, Texas, 2008: 19128.
[2] MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149-154. doi: 10.2118/950149-G
[3] JACOBSEN V, BRYNDUM M B, FREDSØE J. Determination of flow kinematics close to marine'Pipelines and their use in stability calculations[C]// Offshore Technology Conference, Houston, Texas, 1984.
[4] LAMBRAKOS K F, CHAO J C, BECKMANN H, et al. Wake model of hydrodynamic forces on pipelines[J]. Ocean Engineering, 1987, 14(2): 117-136. doi: 10.1016/0029-8018(87)90073-4
[5] FYFE A J, MYRHAUG D, REED K. Hydrodynamic forces on seabed pipelines: large-scale laboratory experiments[C]// Offshore Technology Conference, Houston, Texas, 1987: 123-131.
[6] HOBBS H. Criteria for the design and construction of submarine pipelines[J]. Pipes and Pipelines International, 1966: 24-27.
[7] LYONS C G. Soil resistance to lateral sliding of marine pipelines[C]// Offshore Technology Conference, Houston, Texas, 1973: 1876.
[8] WAGNER D A, MURFF J D, BRENNODDEN H A, et al. Pipe-soil interaction model[C]// Offshore Technology Conference. Houston, Texas, 1987: 5504.
[9] VERLEY R L P, SOTBERG T A. Soil resistance model for pipelines placed on sandy soils[C]// Pipeline Technology, Proceedings of the 11th International Conference on Offshore Mechanics and Arctic Engineering, Alberta, Canada, 1973: 1876.
[10] VERLEY R L P, LUND K M. A soil resistance model for pipelines placed on clay soils[C]// Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Copenhagen, 1995: 225-232.
[11] BRUTON D, WHITE D, CHEUK C, et al. Pipe/soil interaction behavior during lateral buckling, including large-amplitude cyclic displacement tests by the safebuck JIP[C]// Offshore Technology Conference, Houston, Texas, 2006: 568-577.
[12] CHEUK C Y, WHITE D J, BOLTON M D. Large-scale modelling of soil-pipe interaction during large amplitude cyclic movements of partially embedded pipelines[J]. Canadian Geotechnical Journal, 2007, 44(8): 977-996. doi: 10.1139/T07-037
[13] TIAN Y H, CASSIDY M J. Pipe-soil interaction model incorporating large lateral displacements in calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(3): 279-287. doi: 10.1061/(ASCE)GT.1943-5606.0000428
[14] WANG Y F, LIU R, WANG L. Experimental and upper-bound analysis of lateral soil resistance for shallow-embedded pipeline in Bohai sand[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(4): 4018014. doi: 10.1061/(ASCE)PS.1949-1204.0000332
[15] WANG L, DING H Y, PENG B Y, et al. Upper-bound analysis of maximal lateral resistance for pipelines without embedment in sand[J]. Journal of Pipeline Systems Engineering and Practice, 2017, 8(3): 04017006. doi: 10.1061/(ASCE)PS.1949-1204.0000263
[16] WANG L, WANG Y F, PENG B Y, et al. Physical model tests of lateral pipe-soil interaction including the pipe trajectory in sand[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1962-1976. doi: 10.1080/19648189.2020.1742795
[17] WANG L, LIU R. The effect of a berm on the lateral resistance of a shallow pipeline buried in sand[J]. Ocean Engineering, 2016, 121: 13-23. doi: 10.1016/j.oceaneng.2016.05.010
[18] YOUSSEF B S, TIAN Y H, CASSIDY M J. Centrifuge modelling of an on-bottom pipeline under equivalent wave and current loading[J]. Applied Ocean Research, 2013, 40: 14-25. doi: 10.1016/j.apor.2012.10.009
[19] 高福平. 海底管道失稳的流固土耦合机理及预测[C]// 第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会, 长春, 2017. GAO Fuping. Flow-pipe-soil couplingmechanism and theroretical prediction for submarine pipelineinstability on the seabed[C]// The 14th National Academic Conference on Hydrodynamics and the 28th National Seminar on Hydrodynamics, Changchun, 2017. (in Chinese)
[20] 徐万海, 艾化楠, 贾昆, 等. 海底多跨管道流-固-土多场耦合试验研究[J]. 振动与冲击, 2023, 42(5): 1-6. XU Wanhai, AI Huanan, JIA Kun, et al. Test study on fluid-solid-soil multi-field coupling of multi-span submarine pipeline[J]. Journal of Vibration and Shock, 2023, 42(5): 1-6. (in Chinese)
[21] 赵瑞, 贾昆, 闫术明, 等. 考虑不同管土作用模型的海底多跨管道动力特性[J]. 船舶工程, 2021, 43(3): 136-141. ZHAO Rui, JIA Kun, YAN Shuming, et al. Dynamic characteristics of submarine multi-span pipelines considering different pipe-soil interaction models[J]. Ship Engineering, 2021, 43(3): 136-141. (in Chinese)
[22] BASSEM S Y. The Integrated Stability Analysis of Offshore Pipelines[D]. Perth: School of Civil and Resource Engineering Centre for Offshore Foundation Systems, The University of Western Australia, 2011.
[23] BRYNDUM M B, JACOBSEN V B, BRAND L P. Hydrodynamic forces from wave and current loads on marine pipelines[C]// Offshore Technology Conference, Houston, Texas, 1983.
[24] BORGMAN, L E. Directional spectra for design use[C]// Offshore Technology Conference, Houston, Texas, 1969.
[25] CASSIDY M J, HOULSBY G T, EATOCK TAYLOR R. Probabilistic models applicable to the short-term extreme response analysis of jack-up platforms[J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125(4): 249-263. doi: 10.1115/1.1600470
[26] BRENNODDEN H, LIENG J T, SOTBERG T, et al. An energy-based pipe-soil interaction model[C]// Offshore Technology Conference, Houston, Texas, 1989.
-
其他相关附件