Analytical solutions for performance of existing shield tunnel subjected to overlying excavation under anti-uplift portal frame
-
摘要: 上方开挖卸载导致既有盾构隧道结构产生上浮,易引发结构渗漏水、开裂等病害。竖井开挖联合门式框架技术是限制上方开挖引起既有隧道上浮的一种有效控制措施,但是目前仍缺少相应的理论方法用于指导门式抗浮框架的设计。为此,提出了既有隧道结构响应的解析解,可以实现竖井和基坑开挖阶段既有隧道结构纵向和横截面变形计算,并给出了相关的计算流程。通过与工程实例和三维数值模拟结果进行对比,验证了解析解的可靠性。通过典型算例计算和参数敏感性分析讨论了门式抗浮框架的作用机理以及既有隧道埋深和竖井开挖尺寸等因素的影响规律。结果表明:门式抗浮框架在基坑开挖阶段可以有效控制上方开挖引起的既有隧道变形,控制效果与既有隧道上方剩余覆土厚度密切相关,剩余覆土越小控制效果越明显;门式抗浮框架的作用效果主要取决于抗浮板与土体之间的作用力,抗拔桩与土体的作用力对既有隧道变形影响较小。
-
关键词:
- 既有隧道 /
- 门式抗浮框架 /
- 解析解 /
- 竖井开挖 /
- Timoshenko梁
Abstract: The heave of the existing shield tunnels will be induced due to the above excavation, and then structural damages, including leakage and cracking, easily happen. The combination of the shaft excavation and anti-uplift portal frame is an effective technique to limit the heave of the existing tunnels, while the theoretical method is absent presently for the design of the anti-portal frame. Thus, the analytical solutions for the performance of the existing tunnels are proposed for both the longitudinal and cross-section deformations of the existing tunnels during the shaft excavation and foundation pit excavation, respectively. The flow chart is also provided. The results predicted by the analytical solutions are in good agreement with those of the field measurement and 3D numerical simulation, which proves the reliability of the analytical solutions. The mechanism of the anti-uplift portal frame is carefully investigated, and the sensitivity analysis of the buried depth of the existing tunnels and the excavation size of the shaft is performed. The results show that the anti-uplift portal frame can effectively control the deformation of the existing tunnels caused by the above excavation, strongly depending on the thickness of the soil above the existing tunnels. The efficiency of the anti-uplift portal frame is stronger with the decrease of the thickness of the soil above the existing tunnels. The effects of the anti-uplift portal frame mainly depends on the force between the anti-floating slab and the soil, and the uplift pile shows a minor influence on the deformation of the existing tunnels. -
-
表 1 门式抗浮框架计算模型参数
Table 1 Parameters of model for anti-uplift portal frame
既有隧道 地层 埋深C/m 外径/m 等效抗弯刚度/(kN·m-2) 等效剪切刚度/kN E/kPa γ/(kN·m-3) ν c/kPa φ/(°) wr0/m k/(kN·m-1) 15 6.2 2.26×108 5.14×106 5×104 18 0.3 23 23.5 0.01 130 注:wr0为极限桩土相对位移,k为桩土界面的剪切刚度。 -
[1] 魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421-1428. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305029.htm WEI Gang. Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1421-1428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305029.htm
[2] MENG F Y, CHEN R P, XU Y, et al. Contributions to responses of existing tunnel subjected to nearby excavation: a review[J]. Tunnelling and Underground Space Technology, 2022, 119: 104195. doi: 10.1016/j.tust.2021.104195
[3] 郑刚, 杜一鸣, 刁钰, 等. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 2016, 38(4): 599-612. doi: 10.11779/CJGE201604003 ZHENG Gang, DU Yiming, DIAO Yu, et al. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. (in Chinese) doi: 10.11779/CJGE201604003
[4] 徐中华, 宗露丹, 沈健, 等. 邻近地铁隧道的软土深基坑变形实测分析[J]. 岩土工程学报, 2019, 41(增刊1): 41-44. doi: 10.11779/CJGE2019S1011 XU Zhonghua, ZONG Ludan, SHEN Jian, et al. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 41-44. (in Chinese) doi: 10.11779/CJGE2019S1011
[5] 黄茂松, 李豪, 俞剑, 等. 上方基坑开挖引起下卧隧道纵向变形分析方法[J]. 岩土工程学报, 2023, 45(11): 2209-2216. doi: 10.11779/CJGE20220780 HUANG Maosong, LI Hao, YU Jian, et al. Approach on longitudinal deformation of underlying tunnel due to pit excavation above[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2209-2216. (in Chinese) doi: 10.11779/CJGE20220780
[6] 张治国, 张孟喜. 软土城区土压平衡盾构上下交叠穿越地铁隧道的变形预测及施工控制[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3428-3440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2057.htm ZHANG Zhiguo, ZHANG Mengxi. Deformation prediction of subway tunnel induced by EPB shield in soft clay during above and down overlapped traversing process and its construction control[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3428-3440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2057.htm
[7] ZHANG D M, HUANG Z K, LI Z L, et al. Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath[J]. Computers and Geotechnics, 2019, 108(5): 197-211.
[8] CHENG H Z, CHEN R P, WU H N, et al. General solutions for the longitudinal deformation of shield tunnels with multiple discontinuities in strata[J]. Tunnelling and Underground Space Technology, 2021, 107: 103652. doi: 10.1016/j.tust.2020.103652
[9] 陈郁, 李永盛. 基坑开挖卸荷引起下卧隧道隆起的计算方法[J]. 地下空间与工程学报, 2005(1): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE20050100J.htm CHEN Yu, LI Yongsheng. Calculation of tunnel heaving due to unloading of pit excavation[J]. Chinese Journal of Underground Space and Engineering, 2005(1): 91-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE20050100J.htm
[10] HUANG A J, WANG D Y, WANG Z X. Rebound effects of running tunnels underneath an excavation. Tunnelling and Underground Space Technology, 2006, 21(3/4): 399.
[11] 黄宏伟, 黄栩HELMUT S F. 基坑开挖对下卧运营盾构隧道影响的数值模拟研究[J]. 土木工程学报, 2012, 45(3): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203024.htm HUAUG Hongwei, HUAUG Xu, HELMUT S F. Numerical analysis of the influence of deep excavation on underneath existing road tunnel[J]. China Civil Engineering Journal, 2012, 45(3): 182-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203024.htm
[12] 谢雄耀, 郁宏杰, 王庆国, 等. 基坑开挖引起下卧既有电力隧道变形的控制技术研究[J]. 岩土工程学报, 2013, 36(1): 88-97. doi: 10.11779/CJGE201401007 XIE Xiongyao, YU Hongjie, WANG Qingguo, et al. Deformation control of operating tunnels induced by deep excavation of overlying metro[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 88-97. (in Chinese) doi: 10.11779/CJGE201401007
[13] 郭劲睿. 近距离基坑开挖对下卧地铁隧道位移影响分析及位移控制措施研究[D]. 广州: 广州大学, 2018. GUO Jinrui. Analysis of the Influence of Short-distance of Foundation Pit Excavation on the Displacement of the Underlying Subway Tunnel and Research on Displacement Control Measures[D]. Guangzhou: Guangzhou University, 2018. (in Chinese)
[14] 蓝淦洲. 基于门式抗浮框架的基坑开挖下卧隧道变形控制研究[D]. 长沙: 湖南大学, 2021. LAN Ganzhou. Study on Deformation Control of Underlying Tunnel in Foundation Pit Excavation Based on Portal Anti-Floating Frame[D]. Changsha: Hunan University, 2021. (in Chinese)
[15] 吴怀娜, 冯东林, 刘源, 等. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202209013.htm WU Huaina, FENG Donglin, LIU Yuan. Anti-uplift portal frame in control of underlying tunnel deformation induced by foundation pit excavation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1227-1237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202209013.htm
[16] WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317-323. doi: 10.1016/j.tust.2015.08.001
[17] CHENG H Z, CHEN R P, WU H N, et al. A simplified method for estimating the longitudinal and circumferential behaviors of the shield-driven tunnel adjacent to a braced excavation[J]. Computers and Geotechnics, 2020, 123: 103595. doi: 10.1016/j.compgeo.2020.103595
[18] VESIC A S. Bending of beams resting on isotropic elastic solid[J]. Journal of the Engineering Mechanics Division, ASCE, 1961, 87(2): 35-53. doi: 10.1061/JMCEA3.0000212
[19] SHIBA Y, KAWASHIMA K, OBINATA N, et al. Evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analysis[J]. Proceedings of the Japan Society of Civil Engineers, 1988, 398: 319-327. (in Japanese)
[20] LIAO S M, PENG F L, SHEN S L. Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 421-430. doi: 10.1016/j.tust.2007.07.001
[21] LEE K M, HOU X Y, GE X W, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(4): 365-390. doi: 10.1002/nag.134