• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

支盘桩加固既有填砂路基深层软土的模型试验研究

李国维, 赵星宇, 张黎明, 周洋, 熊力, 赫新荣

李国维, 赵星宇, 张黎明, 周洋, 熊力, 赫新荣. 支盘桩加固既有填砂路基深层软土的模型试验研究[J]. 岩土工程学报, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277
引用本文: 李国维, 赵星宇, 张黎明, 周洋, 熊力, 赫新荣. 支盘桩加固既有填砂路基深层软土的模型试验研究[J]. 岩土工程学报, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277
LI Guowei, ZHAO Xingyu, ZHANG Liming, ZHOU Yang, XIONG Li, HE Xinrong. Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277
Citation: LI Guowei, ZHAO Xingyu, ZHANG Liming, ZHOU Yang, XIONG Li, HE Xinrong. Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277

支盘桩加固既有填砂路基深层软土的模型试验研究  English Version

基金项目: 

国家自然科学基金项目 42177126

详细信息
    作者简介:

    李国维(1964—),男,博士,研究员,主要从事软基路堤变形和高边坡稳定性等方面的教学与科研工作。E-mail: lgwnj@163.com

    通讯作者:

    周洋, E-mail: robertzhouy@haut.edu.cn

  • 中图分类号: TU431

Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles

  • 摘要: 高速公路改扩建中既有填砂路基深层软土加固时存在路面结构层和施工场地空间限制的问题。首先,提出使用单盘挤扩支盘桩方案进行地基处理,通过挤扩法成盘于桩顶,以期实现不破除路面结构层的情况下达到设置桩顶承台或托板的效果。其次,利用群桩地基物理模型试验模拟一个桩土单元体研究加固方案的承载过程,通过分析桩体、盘体和土体的力学及变形指标研究支盘桩加固既有填砂路堤的承载表现和土体变形特征,最后,考虑土体参数和桩体尺寸推导了既有填砂路基深层软土支盘桩加固方法的二维简化模型。研究结果表明,软土在恒载下桩体轴力和土压力随时间变化调整,原因在于软土的压缩性和砂土的散粒体属性;桩顶轴力总和与恒载大小近似线性正相关,同时支盘直径越大桩顶轴力总和越大、桩承荷载占比越高,试验发现支盘桩加固法的桩承荷载占比约70%。另外,利用所建二维简化模型进行参数分析发现填砂路基中的最小盘间净距与上覆荷载、填砂内摩擦角、深层软土强度指标和支盘桩几何参数相关。
    Abstract: There are limitations from the pavement structure layer and construction site space during the deep soft soil reinforcement of the existing sand-filled subgrade in expansion of expressways. Firstly, a new method using the squeezed branch pile (SBP) with one single plate for treatment of the existing soft foundation is proposed. In this method, a plate is set on the top of the piler to achieve the effects similar to a pile cap or support plate without breaking the road structure layer. Secondly, a physical model test on the pile group foundation is performed, and a pile-soil unit is simulated to study the bearing behavior of the SBP. By analyzing the mechanical and deformation indices of the pile, plate and soil, the bearing performance and soil-deformation characteristics of the new reinforcement method are studied. Finally, a simplified two-dimensional model for the reinforcement method with SBPs for the existing sand-filled embankment is derived by considering the soil parameters and pile sizes. The results indicate that the axial force of piles and soil pressure vary with time under constant loads due to the compressibility of soft soil and the properties of loose sand. The total axial force at the top of the pile is approximately positively correlated with the magnitude of the constant loads linearly. At the same time, the larger the diameter of the support plate, the greater the total axial force at the top of the pile and the higher the proportion of pile-bearing loads. It is found that the pile-bearing ratio of the reinforcement method with SBPs is about 70%. In addition, the proposed two-dimensional simplified model for parameter analysis shows that the minimum pile spacing in the sand-filled subgrade is related to the overlying load, internal friction angle of sand-filled soil, strength index of deep soft soil and geometric parameters of support piles.
  • 图  1   支盘桩试验模型

    Figure  1.   Model tests on squeezed branch piles

    图  2   传感器安装示意图(图 (1)传感器)

    Figure  2.   Installation of sensors

    图  3   传感器标定

    Figure  3.   Calibration of sensors

    图  4   试验#2时间-轴力关系曲线

    Figure  4.   Time-axial force curve in test No. 2

    图  5   参数随荷载变化

    Figure  5.   Variation of parameters with loading pressure

    图  6   试验#2荷载、盘顶压力、盘面压力时间过程

    Figure  6.   Variation of parameters with loading time in test No. 2

    图  7   支盘表面竖向压力空间分布状态

    Figure  7.   Spatial distribution of vertical pressure on bulb

    图  8   试验#2荷载、盘面压力/盘顶压力的时间过程

    Figure  8.   Time histories of loads and pressures on bulb surface and top in test No. 2

    图  9   模型#2加载过程中的桩间土压力与孔隙水压力

    Figure  9.   Soil pressures and pore water pressures between piles during loading of test No. 2

    图  10   模型#2加载过程中的桩端轴力与桩间土压力

    Figure  10.   Axial forces at pile end and soil pressures between piles during loading of test No. 2

    图  11   模型#2加载过程中的桩端轴力与桩间土压力

    Figure  11.   Axial forces at pile end and soil pressures between piles during loading of test No. 2

    图  12   本级荷载试验过程时段的土颗粒位移矢量云图

    Figure  12.   Nephogram of displacement of soil particles during loading at various levels

    图  13   简化模型示意图

    Figure  13.   Diagram of simplified model

    图  14   D-ΔH

    Figure  14.   Diagram of D-ΔH

    表  1   模型试验用土性状指标

    Table  1   Parameters of soils

    土类 w/% γ/(kN·m-3) Gs wL/% Ip Cc CV/(10-4cm2·s-1) Cq/kPa φq/(°) 粒组含量/%
    < 0.075 < 0.5
    天然软土 53.6 16.5 2.65 44 20 1.12 2.30 10 8 54 94
    干散砂 15.5 2.62 0 20 0 99.1
    下载: 导出CSV

    表  2   传感器参数

    Table  2   Parameters of sensors

    测量指标 传感器类型 量程 数量 量测频率
    桩体轴力 轴力计 0~5 kN 4 1次/min
    盘顶压力 土压力计 0~500 kPa 4 1次/min
    盘面压力 土压力计 0~200 kPa 4 1次/min
    桩间土压力 土压力计 0~200 kPa 5 1次/min
    软土孔隙水压力 孔压计 0~100 kPa 1 1次/min
    模型顶板下沉量 百分表 0~15 mm 1 1次/min
    软土层压缩量 位移杆 0~10 cm 4 1次/h
    位移片 0~10 cm 12 1次/h
    模型剖面土层
    各点位移矢量
    PIV设备 1 1次/h
    下载: 导出CSV

    表  3   试验模型参数及控制条件

    Table  3   Parameters of model tests

    砂层
    厚度/
    mm
    淤泥
    厚度/
    mm
    模型桩
    直径/
    mm
    桩间
    距/
    mm
    荷载
    级数
    分级
    荷载/
    kPa
    变形稳
    定标准/
    (mm·h-1)
    350 260 32 150 12 5 < 0.01
    下载: 导出CSV

    表  4   模型试验实施情况指标

    Table  4   Implementation indices of model tests

    编号 试验
    时间/
    h
    支盘
    直径/
    mm
    盘净距/盘径 盘面积
    占比/
    %
    盘净
    距/
    mm
    淤泥含水率/%
    试验前 试验后 变化量
    #1 229.8 75 1.00 19.6 75 59.94 54.81 5.13
    #2 220.1 85 0.76 25.2 65 56.56 51.64 4.92
    #3 192.3 95 0.58 31.5 55 55.54 52.60 2.94
    下载: 导出CSV

    表  5   桩体轴力比较

    Table  5   Comparison of pile axial force

    试验
    编号
    试验
    时间/h
    支盘直
    径/mm
    盘缘距
    /mm
    最大荷载
    /kPa
    桩端轴力
    总和/kN
    桩承荷载
    占比/%
    #1 229.8 75 75 60 7.63 63.6
    #2 220.1 85 65 60 8.33 69.4
    #3 192.3 95 55 60 8.98 74.8
    下载: 导出CSV

    表  6   模型#2盘顶、盘面压力

    Table  6   Pressures on bulb top and surface of model No. 2

    桩位
    序号
    荷载/
    kPa
    盘顶
    压力/
    kPa
    盘面法向压
    力/kPa
    盘面竖向压力/
    kPa
    盘顶压力/荷载 盘面法
    向压力/
    荷载
    盘面法向压力/盘顶压力
    a桩 60 202.99 109.74 137.48 3.38 1.83 0.54
    b桩 60 218.10 132.16 165.57 3.64 2.20 0.61
    c桩 60 180.01 117.95 147.77 3.00 1.97 0.66
    d桩 60 169.09 83.79 104.97 2.82 1.40 0.50
    下载: 导出CSV

    表  7   试验前后淤泥参数

    Table  7   Parameters of sludge before and after tests

    试验编号 试验
    时间/
    h
    支盘
    直径/
    mm
    最大
    荷载/
    kPa
    淤泥含水率初值/% 淤泥含
    水率终
    值/%
    淤泥孔
    隙比
    初值
    总压
    缩量/
    mm
    淤泥层
    压缩量/
    mm
    #1 229.8 75 60 59.94 54.81 1.618 30.1 15.4
    #2 220.1 85 60 55.56 51.64 1.527 27.6 15.0
    #3 192.3 95 60 55.54 52.60 1.500 24.2 8.3
    下载: 导出CSV

    表  8   工况参数与盘间净距

    Table  8   Working parameters and disc clearances

    材料属性参数 盘几何参数 条件参数 盘间距
    γ/
    (kN·m-3)
    φ/
    (°)
    φ/
    (°)
    c/
    kPa
    L/
    m
    α/
    (°)
    h/
    m
    ΔH/m D/m
    min max max min
    17 25 8 15 0.57 25 2.0 7.0 8.25 3.99 2.92
    3.0 8.0 9.50 5.89 4.33
    4.0 9.0 10.75 7.76 5.72
    下载: 导出CSV
  • [1] 沈立森, 杨广庆, 程和堂, 等. 高速公路路基加宽土工格栅加筋优化技术研究[J]. 岩土工程学报, 2013, 35(4): 789-793. http://cge.nhri.cn/cn/article/id/15031

    SHEN Lisen, YANG Guangqing, CHENG Hetang, et al. Optimization technology for geogrid-reinforced subgrade widening projects of highways[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 789-793. (in Chinese) http://cge.nhri.cn/cn/article/id/15031

    [2] 高翔, 刘松玉, 石名磊. 软土地基上高速公路路基扩建加宽中的关键问题[J]. 公路交通科技, 2004, 21(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200402008.htm

    GAO Xiang, LIU Songyu, SHI Minglei. Key problems in embankment widening of expressway on soft ground[J]. Journal of Highway and Transportation Research and Development, 2004, 21(2): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200402008.htm

    [3] 马文生. 管桩在津滨高速改扩建工程中的应用[J]. 岩土工程学报, 2011, 33(增刊1): 138-141. http://cge.nhri.cn/cn/article/id/14240

    MA Wensheng. Application of pipe piles to reconstruction project of Tianjin-Tanggu Expressway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 138-141. (in Chinese) http://cge.nhri.cn/cn/article/id/14240

    [4] 刘广宇, 熊力, 李国维, 等. 填土堆载下梁式带帽支盘桩现场试验研究[J]. 公路交通科技, 2022, 39(6): 66-72. doi: 10.3969/j.issn.1002-0268.2022.06.009

    LIU Guangyu, XIONG Li, LI Guo-wei, et al. Field Experimental Study on Beam-type Capped Squeezed Branch Pile under Fill Loading[J]. Journal of Highway and Transportation Research and Development, 2022, 39(6): 66-72. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.06.009

    [5] 赵明华, 吴岳武, 郑玥. 变荷载下双层不排水桩复合地基一维固结分析[J]. 公路交通科技, 2016, 33(11): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201611007.htm

    ZHAO Minghua, WU Yuewu, ZHENG Yue. Analysis of 1D consolidation of double-layered composite foundation with impervious pile under time-dependent loading[J]. Journal of Highway and Transportation Research and Development, 2016, 33(11): 42-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201611007.htm

    [6] 杨涛, 滕世权, 李国维, 等. 动载下桩承式路堤中平面土拱形态演化的数值模拟[J]. 公路交通科技, 2020, 37(5): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005004.htm

    YANG Tao, TENG Shiquan, LI Guowei, et al. Numerical simulation of evolution of 2D soil arch shape in pile supported embankment under dynamic load[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005004.htm

    [7]

    MOHAN D. Design and construction of multi-under-reamed piles[C]// The Seventh International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969.

    [8]

    QIAN Y M, XIE X W, WANG R Z. Research on the ultimate bearing capacity of soil about push-extend multi-under- reamed pile at the compression[J]. Advanced materials research, 2013, 718: 1867-1871.

    [9]

    XIONG L, LI G W, ZHOU Y, et al. Experimental and analytical investigation of the bearing capacity of bulbs for squeezed branch piles[J]. International Journal of Geomechanics, 2023, 23(5).

    [10] 卢成原, 孟凡丽, 王龙. 模型支盘桩的试验研究[J]. 岩土力学, 2004, 25(11): 1809-1813. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802045.htm

    LU Chengyuan, MENG Fanli, WANG Long. Test study of model piles with branches and plates[J]. Rock and Soil Mechanics, 2004, 25(11): 1809-1813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802045.htm

    [11] 张琰, 陈培, 赵贞欣. 软土地基挤扩支盘桩基础试验研究[J]. 岩土工程学报, 2013, 35(增刊2): 994-997. http://cge.nhri.cn/cn/article/id/15534

    ZHANG Yan, CHEN Pei, ZHAO Zhenxin. Experimental study on squeezed branch pile foundation in soft soil ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 994-997. (in Chinese) http://cge.nhri.cn/cn/article/id/15534

    [12] 王东坡, 钱德玲. 挤扩支盘桩的荷载传递规律及研究现状[J]. 岩石力学与工程学报, 2004, 23(增刊1): 4645-4648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S1083.htm

    WANG Dongpo, QIAN Deling. Law of load transmission of squeezed branch piles and it's research advances[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(S1): 4645-4648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S1083.htm

    [13] 张忠苗, 辛公锋, 夏唐代, 等. 软土地基灌注桩、挤扩支盘桩和注浆桩应用效果分析[J]. 岩土工程学报, 2004, 26(5): 709-711. http://cge.nhri.cn/cn/article/id/11509

    ZHANG Zhongmiao, XIN Gongfeng, XIA Tangdai, et al. Analysis on effect of grouting pile, squeezed branch pile and bottom grouting pile[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 709-711. (in Chinese) http://cge.nhri.cn/cn/article/id/11509

    [14] 王伊丽, 徐良英, 李碧青, 等. 挤扩支盘桩竖向承载力特性和影响因素的数值研究[J]. 土木工程学报, 2015, 48(增刊2): 158–162. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2029.htm

    WANG Yili, XU Liangying, LI Biqing, et al. Finite element numerical study on the axial bearing behaviors and factors of squeezed branch pile[J]. China Civil Engineering Journal, 2015, 48(S2): 158–162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2029.htm

    [15] 李连祥, 符庆宏, 张海平. 微型土压力传感器标定方法研究[J]. 地震工程学报, 2017, 39(4): 731-737. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201704022.htm

    LI Lianxiang, FU Qinghong, ZHANG Haiping. Study on the calibration method of micro earth pressure sensors[J]. China Earthquake Engineering Journal, 2017, 39(4): 731-737. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201704022.htm

    [16] 曾辉, 余尚江. 岩土应力传感器设计和使用原则[J]. 岩土工程学报, 1994, 15(1): 93-98. http://cge.nhri.cn/cn/article/id/9749

    ZENG Hui, YU Shangjiang. Principles of design and application of geotechnical stress sensors[J]. Chinese Journal of Geotechnical Engineering, 1994, 15(1): 93-98. (in Chinese) http://cge.nhri.cn/cn/article/id/9749

    [17]

    KHOTEJA D, ZHOU Y, PU H, et al. Rapid treatment of high-water-content dredged slurry using composite flocculant and PHD-facilitated vacuum[J]. Marine Georesources & Geotechnology, 2022, 40(3): 297-307.

    [18]

    HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12-18.

    [19]

    BRITTON E, NAUGHTON P. An experimental investigation of arching in piled embankments[C]// Proceedings of the 4th European Geosynthetics Congress EuroGeo. Vienna, 2008.

  • 期刊类型引用(4)

    1. 张平. FPSO内转塔单点吸力锚运输吊装分析. 石油和化工设备. 2025(01): 109-113 . 百度学术
    2. 周闯,钱建固,尹振宇. 各向异性砂土渗流潜蚀流体动力学-离散元流固耦合分析. 岩土力学. 2024(01): 302-312 . 百度学术
    3. 韩树鑫,邓学晶,李望晨,于龙,管龙飞. 吸力锚贯入引发的浅层水合物解离和储层孔隙压力再分布研究. 中国造船. 2024(03): 197-204 . 百度学术
    4. 郭敏,殷鹏程,勾红叶,谭庄,梁金宝. 洪水作用下高速铁路桥梁动力响应研究. 铁道标准设计. 2024(08): 99-107 . 百度学术

    其他类型引用(5)

图(14)  /  表(8)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  30
  • PDF下载量:  65
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-04-02
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回