• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

支盘桩加固既有填砂路基深层软土的模型试验研究

李国维, 赵星宇, 张黎明, 周洋, 熊力, 赫新荣

李国维, 赵星宇, 张黎明, 周洋, 熊力, 赫新荣. 支盘桩加固既有填砂路基深层软土的模型试验研究[J]. 岩土工程学报, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277
引用本文: 李国维, 赵星宇, 张黎明, 周洋, 熊力, 赫新荣. 支盘桩加固既有填砂路基深层软土的模型试验研究[J]. 岩土工程学报, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277
LI Guowei, ZHAO Xingyu, ZHANG Liming, ZHOU Yang, XIONG Li, HE Xinrong. Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277
Citation: LI Guowei, ZHAO Xingyu, ZHANG Liming, ZHOU Yang, XIONG Li, HE Xinrong. Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277

支盘桩加固既有填砂路基深层软土的模型试验研究  English Version

基金项目: 

国家自然科学基金项目 42177126

详细信息
    作者简介:

    李国维(1964—),男,博士,研究员,主要从事软基路堤变形和高边坡稳定性等方面的教学与科研工作。E-mail: lgwnj@163.com

    通讯作者:

    周洋, E-mail: robertzhouy@haut.edu.cn

  • 中图分类号: TU431

Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles

  • 摘要: 高速公路改扩建中既有填砂路基深层软土加固时存在路面结构层和施工场地空间限制的问题。首先,提出使用单盘挤扩支盘桩方案进行地基处理,通过挤扩法成盘于桩顶,以期实现不破除路面结构层的情况下达到设置桩顶承台或托板的效果。其次,利用群桩地基物理模型试验模拟一个桩土单元体研究加固方案的承载过程,通过分析桩体、盘体和土体的力学及变形指标研究支盘桩加固既有填砂路堤的承载表现和土体变形特征,最后,考虑土体参数和桩体尺寸推导了既有填砂路基深层软土支盘桩加固方法的二维简化模型。研究结果表明,软土在恒载下桩体轴力和土压力随时间变化调整,原因在于软土的压缩性和砂土的散粒体属性;桩顶轴力总和与恒载大小近似线性正相关,同时支盘直径越大桩顶轴力总和越大、桩承荷载占比越高,试验发现支盘桩加固法的桩承荷载占比约70%。另外,利用所建二维简化模型进行参数分析发现填砂路基中的最小盘间净距与上覆荷载、填砂内摩擦角、深层软土强度指标和支盘桩几何参数相关。
    Abstract: There are limitations from the pavement structure layer and construction site space during the deep soft soil reinforcement of the existing sand-filled subgrade in expansion of expressways. Firstly, a new method using the squeezed branch pile (SBP) with one single plate for treatment of the existing soft foundation is proposed. In this method, a plate is set on the top of the piler to achieve the effects similar to a pile cap or support plate without breaking the road structure layer. Secondly, a physical model test on the pile group foundation is performed, and a pile-soil unit is simulated to study the bearing behavior of the SBP. By analyzing the mechanical and deformation indices of the pile, plate and soil, the bearing performance and soil-deformation characteristics of the new reinforcement method are studied. Finally, a simplified two-dimensional model for the reinforcement method with SBPs for the existing sand-filled embankment is derived by considering the soil parameters and pile sizes. The results indicate that the axial force of piles and soil pressure vary with time under constant loads due to the compressibility of soft soil and the properties of loose sand. The total axial force at the top of the pile is approximately positively correlated with the magnitude of the constant loads linearly. At the same time, the larger the diameter of the support plate, the greater the total axial force at the top of the pile and the higher the proportion of pile-bearing loads. It is found that the pile-bearing ratio of the reinforcement method with SBPs is about 70%. In addition, the proposed two-dimensional simplified model for parameter analysis shows that the minimum pile spacing in the sand-filled subgrade is related to the overlying load, internal friction angle of sand-filled soil, strength index of deep soft soil and geometric parameters of support piles.
  • 基于连续介质理论和唯象的常规土力学在描述岩土材料非连续性、大变形和破坏等复杂特性方面存在缺陷,笔者[1]在第22讲黄文熙讲座中提出宏微观土力学的概念,为现代土力学研究开启了新视野,从本质上探求岩土材料复杂宏观特性的微细观机理,首先需要探知土体的微细观特性,如土体的微观结构[2]、粒间接触响应[3],颗粒转动[4],颗粒破碎[5],应变局部化[6]等,其主要研究方法包括微观试验方法和离散单元法。而离散单元法等数值模拟方法也需要室内试验结果作为建立模型的依据和验证手段。因此,需要研发相关试验设备,为探求土体宏观力学性质背后的微观机理提供试验基础。

    将传统的三轴试验设备与CT扫描设备相结合,是获取岩土材料微细观结构及力学信息的有效方法。许多学者针对不同岩土材料通过研制或使用相应的试验设备结合CT扫描进行了微细观研究。王登科等[7]采用美国通用电气公司生产的煤岩CT扫描系统研究煤体裂隙动态演化,该系统可进行非受载、单轴加载、三轴加载条件下煤岩材料样品的三维细观结构扫描。葛修润等[8]研制出与CT机配套的用于测试煤岩的三轴加载设备,可进行煤岩损伤扩展的动态扫描。陈正汉等[9]将改造后的非饱和土三轴仪平放入卧式CT机中对试样的横断面进行扫描,可进行多种应力路径下的三轴试验,可观测土样的微孔隙、微裂纹,并能追踪试验中裂隙发育成破坏面的演化过程。李小春等[10]利用能和微焦X射线CT系统配套使用的三轴仪,得出细观孔隙结构的变化是导致Berea 砂岩渗透性改变的原因。庞旭卿等[11]利用应力控制式CT-三轴仪对黄土进行常规三轴剪切试验,能够观测到黄土空洞区周围土颗粒的滑移。曹剑秋等[12]利用自主研发的微型三轴仪,研究南京粉砂三轴应力状态下的力学特性,通过显微CT扫描获取试验中试样孔隙变化和颗粒间错动规律。程壮等[13]开发了一台微型三轴试验装置,借助于X射线显微CT及图像处理分析技术,该装置能够实现对砂土微尺寸试样(直径为8 mm,高度为16 mm)在三轴剪切条件下微观特性的无损检测。

    三轴剪切试验过程中对试样进行CT扫描已经成为获取岩土材料宏观力学特性背后微细观信息和力学特性的重要试验手段,为了研究土体宏微观力学特性,笔者团队自主研制了适用于CT扫描的微型三轴仪,该仪器测试可靠,兼容性强,操作方便,经济合理,能够进行岩土试样结构内部任意断面完整扫描,实现试验过程中对试样的无损检测。

    本文在常规三轴试验设备的基础上,研制出一种适用于土体宏微观特性测试的微型三轴仪,其研制基本原则是:①通过调研目前工业CT扫描设备内空间大小,发现能够容纳的仪器尺寸有限,常规三轴仪器无法置于其中;②仪器选材除需要轻质和满足强度要求外,为保证CT扫描清晰,压力室宜采用透光性材料且无遮挡;③满足常规三轴仪测试土体力学特性的基本要求,试验结果可靠;④要便于操作,不宜使装样、加载等过程复杂;⑤不影响工业CT设备的其他使用功能,不需要对CT设备进行改装;⑥经济合理,适合于广大青年科研人员开展研究。

    微型三轴仪主要由加载装置和控制采集箱组成,加载装置用以对试样施加荷载,主要包括步进电机,压力室及轴压、孔压传感器等,如图1(a)所示。加载装置高度为40 cm,质量约为10 kg,底座直径为12 cm,能轻便地放置于工业CT扫描设备内,如图1(b)所示,该加载装置通过围压管路、试样顶部排水管路和数据线与外部控制采集箱相连接,控制采集箱包括触摸屏、围压调压舱、反压调压舱及围压传感器和孔压传感器等,如图1(c)所示。试验时通过控制采集箱上的触摸屏及软件进行参数设置和控制加载。试验时不需要对CT设备进行改装,并且不影响CT设备的其他检测功能,试验结束后将主机从CT设备内取出即可。微型三轴仪底座由铝和不锈钢制成,压力室由透光性好的有机玻璃制成,其余部分主要由不锈钢制成,压力室壁厚为5 mm,并且无遮挡部件,压力室半径为35 mm,能够使X射线光源尽可能靠近试样,既能保证微型三轴仪轻便、强度高,而且可以保证试样扫描图像的清晰度,如图2所示。微型三轴仪试样尺寸为直径10 mm,高度20 mm,根据规范[14]可适用于粒径小于1 mm的土体,这满足砂土、粉土、黏土的颗粒要求,适用范围较广,另外由于试样尺寸较小,可对试样整体进行扫描。试验制样时,操作简单,用内径10 mm、高度20 mm的环刀切取土样,装样与常规三轴试验操作一致,不需要额外繁琐的操作步骤和辅助工具。通过将该微型三轴仪与CT扫描相结合,既能得到土样的宏观力学参量,又能获取宏观力学性质背后的微细观结构和力学信息,为数值仿真模拟提供试验依据。该设备属自主研制,经济合理,加工方便,适合广大岩土科研人员特别是青年科研人员使用。

    图  1  微型三轴仪
    Figure  1.  Miniature triaxial apparatus
    图  2  丰浦砂样CT扫描切片
    Figure  2.  Micro-CT slice of Toyoura sand sample

    轴压加载通过贯通式步进电机经竖向活塞杆和试样帽将轴向压力施加给试样,加载方式分为应变控制和应力控制,试样扫描过程中能够保持试样的应力状态或位移基本不变。轴向荷载传感器安装在试样下方的底座内,有效地消除了轴向荷载中由活塞杆与活塞螺母之间摩擦力引起的测量误差。但这会导致在围压加载时会引起轴向传感器出现压力值,因此,在试样剪切前需将围压引起的轴向荷载传感器压力值清零,采集系统所记录的即为偏应力值。贯通式步进电机通过数据线与控制采集箱连接,加载过程中实时记录轴向荷载传感器的压力值。

    压力室通过围压管路与控制采集箱中的围压调压舱连接,试验时首先要将压力室内注满水,通过围压调压舱对试样施加围压,围压允许的最大值为600 kPa,围压的加压速度可以调节,当到达设定围压值时,保持围压稳定。

    反压控制系统是控制采集箱中的反压调压舱通过反压管路和试样顶部排水管,与试样相连,通过反压调压舱对试样施加反压,反压允许的最大值为600 kPa。同时,该管路也为微型三轴仪的上排水管路,即试样通过上部排水将试样内的水排至反压调压舱内,根据测得的反压调压舱体积变化,作为试样在试验过程中的排水量。

    量测采集系统包括控制采集箱、轴向荷载传感器、孔隙水压力传感器和数据线。轴向荷载传感器量测步进电机施加到试样上的荷载,经数据线由控制采集箱计算为应力并记录。孔压传感器通过试样下部排水管与试样连接,测得的孔隙水压力经数据线由控制采集箱记录。围压和反压传感器位于相应的调压舱内,用以反馈控制围压和反压稳定。试样的轴向位移由步进电机的丝杆行程计算而得并由控制采集箱记录。

    该微型三轴仪是在常规三轴设备的基础上研制而成,满足常规三轴试验的基本功能,结合目前现有的工业CT,通过CT扫描能够获取土体的微观结构和力学信息,扫描结果清晰,数据可靠,同时具备兼容性强,适应性好,操作方便,经济合理等优点,可用于岩土材料宏微观力学特性的研究。

    丰浦砂是日本生产的试验用标准砂,本试验采用丰浦砂制作干砂试样,其物理指标见表1

    表  1  丰浦砂物理参数
    Table  1.  Physical parameters of Toyoura sand
    土粒相对密度Gs最大孔隙比emax最小孔隙比emin
    2.650.9770.597
    下载: 导出CSV 
    | 显示表格

    根据所要求的孔隙比和试样体积称取一定质量的丰浦砂。干砂制样时,首先将透水石和滤纸放置于试样底座上,将乳胶膜套在透水石和试样底座上,用橡皮筋将乳胶膜和试样底座箍紧,用对开模将乳胶膜箍住,用夹具锁紧,将乳胶膜上端翻下套在对开模上,然后将预先称好的丰浦砂分层均匀装入乳胶膜内,在砂样顶面依次放置滤纸和透水石,确保透水石顶面与对开模顶面齐平,最后装好试样上帽,拆除对开模,制样完成,如图3所示。将压力室外罩轻轻放在压力室底座上,拧紧螺丝防止加围压时压力室漏水。活塞杆轻轻触碰在试样帽顶面,将电机加载杆调节至与活塞杆顶面刚好接触。

    图  3  制干砂试样过程
    Figure  3.  Process of making dry sand sample

    按照上述制样和加载步骤,分别进行100,150,200 kPa围压条件下的微型三轴不固结不排水(UU)剪切试验。此外,制备与微型三轴砂样相同孔隙比和相对密实度的常规三轴砂样,即直径为39.1 mm,高度为80 mm的试样,利用常规三轴仪分别进行100,150,200 kPa围压条件下的三轴不固结不排水剪切试验。

    图4,5为微型三轴仪与常规三轴仪试验及得到的偏应力与轴向应变关系。由图5可知,在不同围压下由微型三轴试验和常规三轴试验得到的应力与应变关系变化规律相似,当应变较小时,偏应力迅速增加,随后偏应力缓慢增加,轴向应变达到5%左右时出现偏应力峰值,随着轴向应变的增加,偏应力逐渐减小,出现应变软化现象。在不同围压下微型三轴试验得到的峰值偏应力与常规三轴试验得到的峰值偏应力接近。另外,通过图4可以看到,微型三轴试验和常规三轴试验分别出现了角度相近的剪切带。

    图  4  微型三轴仪与常规三轴仪对比试验
    Figure  4.  Contrast tests between miniature triaxial apparatus and conventional triaxial apparatus
    图  5  偏应力与轴向应变关系曲线
    Figure  5.  Relationship between deviator stress and axial strain

    微型三轴试验和常规三轴试验得出的砂样的内摩擦角如表2所示,微型三轴试验得到的两组内摩擦角几乎相等,另外,与常规三轴试验得到的内摩擦角数值接近,误差约为5%,验证了微型三轴仪的可靠性。

    表  2  内摩擦角结果比较
    Table  2.  The comparison of the angle of internal friction
    试验类型内摩擦角φ/(°)
    微型三轴试验38.67
    38.34
    常规三轴试验36.53
    误差5%
    下载: 导出CSV 
    | 显示表格

    本文介绍了基于常规三轴试验设备研发的微型三轴仪,结合CT扫描设备,可用于测试土样的宏微观力学特性,主要结论如下:

    (1)该微型三轴仪能够实现常规三轴的基本功能,轻便易携带,能够成功置于工业CT系统设备内进行扫描,试样扫描图像清晰,实现对土样无损检测,数据可靠,操作方便,兼容性强,经济合理。

    (2)采用丰浦砂干砂,将微型三轴仪与常规三轴仪进行剪切试验对比,结果表明,微型三轴仪得到的应力应变关系曲线与常规三轴仪基本一致,测得的力学指标误差较小,验证了该微型三轴仪的可靠性。

    另外,还需验证该微型三轴仪对黏土的适用性,进而用于深海土三轴试样CT可视化试验,分析土体在三轴剪切应力路径下微细观特征和演化规律,为深海土研究提供实测数据模型。

  • 图  1   支盘桩试验模型

    Figure  1.   Model tests on squeezed branch piles

    图  2   传感器安装示意图(图 (1)传感器)

    Figure  2.   Installation of sensors

    图  3   传感器标定

    Figure  3.   Calibration of sensors

    图  4   试验#2时间-轴力关系曲线

    Figure  4.   Time-axial force curve in test No. 2

    图  5   参数随荷载变化

    Figure  5.   Variation of parameters with loading pressure

    图  6   试验#2荷载、盘顶压力、盘面压力时间过程

    Figure  6.   Variation of parameters with loading time in test No. 2

    图  7   支盘表面竖向压力空间分布状态

    Figure  7.   Spatial distribution of vertical pressure on bulb

    图  8   试验#2荷载、盘面压力/盘顶压力的时间过程

    Figure  8.   Time histories of loads and pressures on bulb surface and top in test No. 2

    图  9   模型#2加载过程中的桩间土压力与孔隙水压力

    Figure  9.   Soil pressures and pore water pressures between piles during loading of test No. 2

    图  10   模型#2加载过程中的桩端轴力与桩间土压力

    Figure  10.   Axial forces at pile end and soil pressures between piles during loading of test No. 2

    图  11   模型#2加载过程中的桩端轴力与桩间土压力

    Figure  11.   Axial forces at pile end and soil pressures between piles during loading of test No. 2

    图  12   本级荷载试验过程时段的土颗粒位移矢量云图

    Figure  12.   Nephogram of displacement of soil particles during loading at various levels

    图  13   简化模型示意图

    Figure  13.   Diagram of simplified model

    图  14   D-ΔH

    Figure  14.   Diagram of D-ΔH

    表  1   模型试验用土性状指标

    Table  1   Parameters of soils

    土类 w/% γ/(kN·m-3) Gs wL/% Ip Cc CV/(10-4cm2·s-1) Cq/kPa φq/(°) 粒组含量/%
    < 0.075 < 0.5
    天然软土 53.6 16.5 2.65 44 20 1.12 2.30 10 8 54 94
    干散砂 15.5 2.62 0 20 0 99.1
    下载: 导出CSV

    表  2   传感器参数

    Table  2   Parameters of sensors

    测量指标 传感器类型 量程 数量 量测频率
    桩体轴力 轴力计 0~5 kN 4 1次/min
    盘顶压力 土压力计 0~500 kPa 4 1次/min
    盘面压力 土压力计 0~200 kPa 4 1次/min
    桩间土压力 土压力计 0~200 kPa 5 1次/min
    软土孔隙水压力 孔压计 0~100 kPa 1 1次/min
    模型顶板下沉量 百分表 0~15 mm 1 1次/min
    软土层压缩量 位移杆 0~10 cm 4 1次/h
    位移片 0~10 cm 12 1次/h
    模型剖面土层
    各点位移矢量
    PIV设备 1 1次/h
    下载: 导出CSV

    表  3   试验模型参数及控制条件

    Table  3   Parameters of model tests

    砂层
    厚度/
    mm
    淤泥
    厚度/
    mm
    模型桩
    直径/
    mm
    桩间
    距/
    mm
    荷载
    级数
    分级
    荷载/
    kPa
    变形稳
    定标准/
    (mm·h-1)
    350 260 32 150 12 5 < 0.01
    下载: 导出CSV

    表  4   模型试验实施情况指标

    Table  4   Implementation indices of model tests

    编号 试验
    时间/
    h
    支盘
    直径/
    mm
    盘净距/盘径 盘面积
    占比/
    %
    盘净
    距/
    mm
    淤泥含水率/%
    试验前 试验后 变化量
    #1 229.8 75 1.00 19.6 75 59.94 54.81 5.13
    #2 220.1 85 0.76 25.2 65 56.56 51.64 4.92
    #3 192.3 95 0.58 31.5 55 55.54 52.60 2.94
    下载: 导出CSV

    表  5   桩体轴力比较

    Table  5   Comparison of pile axial force

    试验
    编号
    试验
    时间/h
    支盘直
    径/mm
    盘缘距
    /mm
    最大荷载
    /kPa
    桩端轴力
    总和/kN
    桩承荷载
    占比/%
    #1 229.8 75 75 60 7.63 63.6
    #2 220.1 85 65 60 8.33 69.4
    #3 192.3 95 55 60 8.98 74.8
    下载: 导出CSV

    表  6   模型#2盘顶、盘面压力

    Table  6   Pressures on bulb top and surface of model No. 2

    桩位
    序号
    荷载/
    kPa
    盘顶
    压力/
    kPa
    盘面法向压
    力/kPa
    盘面竖向压力/
    kPa
    盘顶压力/荷载 盘面法
    向压力/
    荷载
    盘面法向压力/盘顶压力
    a桩 60 202.99 109.74 137.48 3.38 1.83 0.54
    b桩 60 218.10 132.16 165.57 3.64 2.20 0.61
    c桩 60 180.01 117.95 147.77 3.00 1.97 0.66
    d桩 60 169.09 83.79 104.97 2.82 1.40 0.50
    下载: 导出CSV

    表  7   试验前后淤泥参数

    Table  7   Parameters of sludge before and after tests

    试验编号 试验
    时间/
    h
    支盘
    直径/
    mm
    最大
    荷载/
    kPa
    淤泥含水率初值/% 淤泥含
    水率终
    值/%
    淤泥孔
    隙比
    初值
    总压
    缩量/
    mm
    淤泥层
    压缩量/
    mm
    #1 229.8 75 60 59.94 54.81 1.618 30.1 15.4
    #2 220.1 85 60 55.56 51.64 1.527 27.6 15.0
    #3 192.3 95 60 55.54 52.60 1.500 24.2 8.3
    下载: 导出CSV

    表  8   工况参数与盘间净距

    Table  8   Working parameters and disc clearances

    材料属性参数 盘几何参数 条件参数 盘间距
    γ/
    (kN·m-3)
    φ/
    (°)
    φ/
    (°)
    c/
    kPa
    L/
    m
    α/
    (°)
    h/
    m
    ΔH/m D/m
    min max max min
    17 25 8 15 0.57 25 2.0 7.0 8.25 3.99 2.92
    3.0 8.0 9.50 5.89 4.33
    4.0 9.0 10.75 7.76 5.72
    下载: 导出CSV
  • [1] 沈立森, 杨广庆, 程和堂, 等. 高速公路路基加宽土工格栅加筋优化技术研究[J]. 岩土工程学报, 2013, 35(4): 789-793. http://cge.nhri.cn/cn/article/id/15031

    SHEN Lisen, YANG Guangqing, CHENG Hetang, et al. Optimization technology for geogrid-reinforced subgrade widening projects of highways[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 789-793. (in Chinese) http://cge.nhri.cn/cn/article/id/15031

    [2] 高翔, 刘松玉, 石名磊. 软土地基上高速公路路基扩建加宽中的关键问题[J]. 公路交通科技, 2004, 21(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200402008.htm

    GAO Xiang, LIU Songyu, SHI Minglei. Key problems in embankment widening of expressway on soft ground[J]. Journal of Highway and Transportation Research and Development, 2004, 21(2): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200402008.htm

    [3] 马文生. 管桩在津滨高速改扩建工程中的应用[J]. 岩土工程学报, 2011, 33(增刊1): 138-141. http://cge.nhri.cn/cn/article/id/14240

    MA Wensheng. Application of pipe piles to reconstruction project of Tianjin-Tanggu Expressway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 138-141. (in Chinese) http://cge.nhri.cn/cn/article/id/14240

    [4] 刘广宇, 熊力, 李国维, 等. 填土堆载下梁式带帽支盘桩现场试验研究[J]. 公路交通科技, 2022, 39(6): 66-72. doi: 10.3969/j.issn.1002-0268.2022.06.009

    LIU Guangyu, XIONG Li, LI Guo-wei, et al. Field Experimental Study on Beam-type Capped Squeezed Branch Pile under Fill Loading[J]. Journal of Highway and Transportation Research and Development, 2022, 39(6): 66-72. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.06.009

    [5] 赵明华, 吴岳武, 郑玥. 变荷载下双层不排水桩复合地基一维固结分析[J]. 公路交通科技, 2016, 33(11): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201611007.htm

    ZHAO Minghua, WU Yuewu, ZHENG Yue. Analysis of 1D consolidation of double-layered composite foundation with impervious pile under time-dependent loading[J]. Journal of Highway and Transportation Research and Development, 2016, 33(11): 42-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201611007.htm

    [6] 杨涛, 滕世权, 李国维, 等. 动载下桩承式路堤中平面土拱形态演化的数值模拟[J]. 公路交通科技, 2020, 37(5): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005004.htm

    YANG Tao, TENG Shiquan, LI Guowei, et al. Numerical simulation of evolution of 2D soil arch shape in pile supported embankment under dynamic load[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005004.htm

    [7]

    MOHAN D. Design and construction of multi-under-reamed piles[C]// The Seventh International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969.

    [8]

    QIAN Y M, XIE X W, WANG R Z. Research on the ultimate bearing capacity of soil about push-extend multi-under- reamed pile at the compression[J]. Advanced materials research, 2013, 718: 1867-1871.

    [9]

    XIONG L, LI G W, ZHOU Y, et al. Experimental and analytical investigation of the bearing capacity of bulbs for squeezed branch piles[J]. International Journal of Geomechanics, 2023, 23(5).

    [10] 卢成原, 孟凡丽, 王龙. 模型支盘桩的试验研究[J]. 岩土力学, 2004, 25(11): 1809-1813. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802045.htm

    LU Chengyuan, MENG Fanli, WANG Long. Test study of model piles with branches and plates[J]. Rock and Soil Mechanics, 2004, 25(11): 1809-1813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802045.htm

    [11] 张琰, 陈培, 赵贞欣. 软土地基挤扩支盘桩基础试验研究[J]. 岩土工程学报, 2013, 35(增刊2): 994-997. http://cge.nhri.cn/cn/article/id/15534

    ZHANG Yan, CHEN Pei, ZHAO Zhenxin. Experimental study on squeezed branch pile foundation in soft soil ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 994-997. (in Chinese) http://cge.nhri.cn/cn/article/id/15534

    [12] 王东坡, 钱德玲. 挤扩支盘桩的荷载传递规律及研究现状[J]. 岩石力学与工程学报, 2004, 23(增刊1): 4645-4648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S1083.htm

    WANG Dongpo, QIAN Deling. Law of load transmission of squeezed branch piles and it's research advances[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(S1): 4645-4648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S1083.htm

    [13] 张忠苗, 辛公锋, 夏唐代, 等. 软土地基灌注桩、挤扩支盘桩和注浆桩应用效果分析[J]. 岩土工程学报, 2004, 26(5): 709-711. http://cge.nhri.cn/cn/article/id/11509

    ZHANG Zhongmiao, XIN Gongfeng, XIA Tangdai, et al. Analysis on effect of grouting pile, squeezed branch pile and bottom grouting pile[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 709-711. (in Chinese) http://cge.nhri.cn/cn/article/id/11509

    [14] 王伊丽, 徐良英, 李碧青, 等. 挤扩支盘桩竖向承载力特性和影响因素的数值研究[J]. 土木工程学报, 2015, 48(增刊2): 158–162. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2029.htm

    WANG Yili, XU Liangying, LI Biqing, et al. Finite element numerical study on the axial bearing behaviors and factors of squeezed branch pile[J]. China Civil Engineering Journal, 2015, 48(S2): 158–162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2029.htm

    [15] 李连祥, 符庆宏, 张海平. 微型土压力传感器标定方法研究[J]. 地震工程学报, 2017, 39(4): 731-737. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201704022.htm

    LI Lianxiang, FU Qinghong, ZHANG Haiping. Study on the calibration method of micro earth pressure sensors[J]. China Earthquake Engineering Journal, 2017, 39(4): 731-737. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201704022.htm

    [16] 曾辉, 余尚江. 岩土应力传感器设计和使用原则[J]. 岩土工程学报, 1994, 15(1): 93-98. http://cge.nhri.cn/cn/article/id/9749

    ZENG Hui, YU Shangjiang. Principles of design and application of geotechnical stress sensors[J]. Chinese Journal of Geotechnical Engineering, 1994, 15(1): 93-98. (in Chinese) http://cge.nhri.cn/cn/article/id/9749

    [17]

    KHOTEJA D, ZHOU Y, PU H, et al. Rapid treatment of high-water-content dredged slurry using composite flocculant and PHD-facilitated vacuum[J]. Marine Georesources & Geotechnology, 2022, 40(3): 297-307.

    [18]

    HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12-18.

    [19]

    BRITTON E, NAUGHTON P. An experimental investigation of arching in piled embankments[C]// Proceedings of the 4th European Geosynthetics Congress EuroGeo. Vienna, 2008.

  • 期刊类型引用(6)

    1. 张军辉,张安顺,彭俊辉,胡惠仁. 循环荷载下路基黏土永久变形特性及力学模型. 中国公路学报. 2024(06): 34-45 . 百度学术
    2. 任戈,刘俊芳,刘鸿飞,白瑞刚,Ihsan Ullal. 基于Eshelby夹杂理论高温冻土累积塑性应变修正模型. 内蒙古工业大学学报(自然科学版). 2024(04): 368-372 . 百度学术
    3. 张斌龙,刘强,王大雁,张吾渝,周志伟,郭文瑾. 主应力轴旋转条件下初始应力状态对冻结黏土动力特性的影响试验研究. 冰川冻土. 2024(05): 1603-1611 . 百度学术
    4. 李月,江欣. 钻井液旋转粘度测试中双圆筒力矩分析. 钻探工程. 2024(S1): 96-103 . 百度学术
    5. 孙凯,李志清,孔佑兴,周应新,王双娇. 单轴循环荷载下冻结土石混合体动弹性模量和累积塑性应变研究. 冰川冻土. 2023(06): 1730-1743 . 百度学术
    6. 王亚鹏,李国玉,陈敦,马巍,张轩. 复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究. 岩土工程学报. 2023(S2): 134-139 . 本站查看

    其他类型引用(5)

图(14)  /  表(8)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-04-02
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-07-31

目录

/

返回文章
返回