• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水循环荷载作用下高面板堆石坝长期变形特性研究

杨启贵, 王艳丽, 左永振

杨启贵, 王艳丽, 左永振. 水循环荷载作用下高面板堆石坝长期变形特性研究[J]. 岩土工程学报, 2024, 46(6): 1339-1346. DOI: 10.11779/CJGE20230262
引用本文: 杨启贵, 王艳丽, 左永振. 水循环荷载作用下高面板堆石坝长期变形特性研究[J]. 岩土工程学报, 2024, 46(6): 1339-1346. DOI: 10.11779/CJGE20230262
YANG Qigui, WANG Yanli, ZUO Yongzhen. Long-term deformation characteristics of high concrete-faced rockfill dams under cyclic loading of water[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1339-1346. DOI: 10.11779/CJGE20230262
Citation: YANG Qigui, WANG Yanli, ZUO Yongzhen. Long-term deformation characteristics of high concrete-faced rockfill dams under cyclic loading of water[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1339-1346. DOI: 10.11779/CJGE20230262

水循环荷载作用下高面板堆石坝长期变形特性研究  English Version

基金项目: 

国家自然科学基金联合基金项目 U21A20158

国家自然科学基金面上项目 51779017

长江科学院中央级公益性科研院所基本科研业务费项目 CKSF2021484/YT

详细信息
    作者简介:

    杨启贵(1964—),男,正高级工程师,长期从事大型水利水电工程勘察设计与研究工作。E-mail: yangqigui@cjwsjy.com.cn

    通讯作者:

    王艳丽, E-mail: wyldhh@126.com

  • 中图分类号: TU43

Long-term deformation characteristics of high concrete-faced rockfill dams under cyclic loading of water

  • 摘要: 高面板堆石坝的长期变形是面板坝建设中的关键技术问题之一,已有研究大多将长期变形归结为堆石体蠕变的结果,但某些高面板堆石坝的变形原型监测资料显示,仅从堆石体蠕变角度难以解释高面板堆石坝长期变形的机理。通过水布垭面板堆石坝17 a的变形监测资料分析和室内低频循环荷载作用下堆石料变形特性试验,探讨了实际运行中库水位周期性变化形成的循环荷载对高面板堆石坝长期变形特性的影响。结果表明:①坝体填筑和初次蓄水引起堆石体的瞬时变形和蠕变,堆石体的后期变形主要是水循环荷载长期作用的结果。②水循环荷载作用下,堆石体的变形表现为两种形式,其一为不可恢复的永久变形(亦称为残余变形),其二为可恢复的弹性变形。③室内低频循环荷载作用试验得到的堆石料变形及其增长规律很好地验证了水循环荷载与堆石坝后期变形的相互关系以及后期变形的力学意义。研究成果为高面板堆石坝长期变形特性研究提供了新的思路,并为具有往复大消落特点的高面板堆石坝变形及安全控制提供借鉴。
    Abstract: The long-term deformation of high concrete-faced rockfill dams is one of the key technical problems during their construction. Most studies have attributed the long-term deformation to rockfill creep, but the prototype monitoring data of some high concrete-faced rockfill dams show that it is difficult to explain the mechanism of their long-term deformation only from the viewpoint of rockfill creep. In this study, based on the analysis of the deformation monitoring data of Shuibuya concrete-faced rockfill dam for 17 years and the tests of the deformation characteristics of rockfill materials under low-frequency cyclic loading, the influences of cyclic loading caused by periodic change of reservoir water level on the long-term deformation characteristics of high concrete-faced rockfill dams are discussed. The results show that: (1) The instantaneous deformation and creep of rockfills body are caused by dam filling and initial water impoundment, and the post deformation of rockfill mainly results from the long-term action of cyclic loading of water. (2) When considering cycle loading of water, the deformation of rockfills exhibits two forms: one is the irrecoverable permanent deformation (also known as residual deformation), and the other is the recoverable elastic deformation. (3) The deformation of rockfills and its growth response obtained from the low-frequency cyclic load tests well verify the relationship between the cyclic loading of water and the post deformation of the rockfill dam as well as the mechanical significance of the later deformation. The research provides a new idea for the studies on the long-term deformation characteristics of high concrete-faced rockfill dams, and it also provides reference for the deformation and safety control of high concrete-faced rockfill dams with reciprocating characteristics.
  • 图  1   0+212断面堆石体内部变形测点布置图

    Figure  1.   Layout of measuring points for internal deformation of 0+212 section

    图  2   最大断面中部(高程300 m)测点沉降演化曲线

    Figure  2.   Evolution curves of settlement at measuring points in middle of maximum section (elevation: 300 m)

    图  3   最大断面中部(高程300 m)测点后期沉降实测值演化曲线

    Figure  3.   Evolution curves of measured values of post settlement at measuring points in middle of maximum section (elevation: 300 m)

    图  4   最大断面中部(高程300 m)部分测点后期沉降实测值与拟合值演化曲线

    Figure  4.   Evolution curves of measured and fitting values of post settlement at partial measuring points in middle of maximum section (elevation: 300 m)

    图  5   最大断面中部(高程300 m)测点年后期沉降拟合曲线

    Figure  5.   Fitting curves of settlement at measuring points in middle of maximum section (elevation: 300 m)

    图  6   最大断面中部(高程300 m)测点后期沉降年增量值

    Figure  6.   Annual increment values of post settlement at measuring points in middle of maximum section (elevation: 300 m)

    图  7   循环荷载加载路径示意图

    Figure  7.   Schematic diagram of cyclic loading path

    图  8   T2组试验轴向应变与围压关系

    Figure  8.   Relationship between axial strain and confining pressure in T2 group tests

    图  9   累积轴向应变与循环次数的关系

    Figure  9.   Relationship between cumulative axial strain and number of cycles

    图  10   轴向应变增量与循环次数关系(扣除第1次)

    Figure  10.   Relationship between axial strain amplitude and number of cycles

    图  11   轴向应变增量与循环次数关系拟合

    Figure  11.   Fitting curves of relationship between axial strain amplitude and number of cycles

    图  12   堆石料三轴蠕变时间关系曲线

    Figure  12.   Relationship curves of triaxial creep-time of rockfill materials

    表  1   最大断面中部(高程300 m)测点后期最大沉降预测值

    Table  1   Predicted values of maximum post-settlement at measuring points in middle of maximum section (elevation: 300 m)

    测点
    编号
    坝体总沉降实测值(到2021年12月21日)/mm 水循环荷载引起坝体后期沉降当前值(到2021年12月21日)/mm 水循环荷载引起坝体最终后期沉降预测值/mm 后期沉降完成率/%
    23 1911.2 173 230 75
    24 1678.6 167 201 83
    25 1916.2 213 261 82
    26 2238.0 233 280 83
    27 2604.9 209 250 84
    28 2621.0 167 213 79
    29 2511.3 164 207 81
    30 1755.9 156 202 77
    下载: 导出CSV

    表  2   典型测点24后期沉降完成率预测值

    Table  2   Predicted values of post-settlement completion rate at typical measuring point No. 24 in later period

    时间/a 后期沉降预测值/mm 后期沉降完成率/%
    1 42 21
    5 119 59
    10 153 76
    15 170 85
    20 180 90
    25 186 93
    30 191 95
    35 194 97
    40 197 98
    下载: 导出CSV

    表  3   试验方案

    Table  3   Test plan

    试验编号 试验干密度/
    (g·cm-3)
    小主应力变化范围/
    MPa
    T1 2.07 1.5→1.0→1.5→2.0→1.5
    T2 2.11 1.5→1.0→1.5→2.0→1.5
    T3 2.07 1.5→1.2→1.5→1.8→1.5
    下载: 导出CSV
  • [1] 周伟, 花俊杰, 常晓林, 等. 水布垭高面板堆石坝运行期工作性态评价及变形预测[J]. 岩土工程学报, 2011, 33(增刊1): 72-77. http://cge.nhri.cn/cn/article/id/14228

    ZHOU Wei, HUA Junjie, CHANG Xiaolin, et al. Estimation of work status and deformation prediction of Shuibuya CFRD[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 72-77. (in Chinese) http://cge.nhri.cn/cn/article/id/14228

    [2] 杨启贵, 常晓林, 周创兵, 等. 水布垭超高面板堆石坝变形控制方法研究[J]. 岩土力学, 2010, 31(增刊2): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2046.htm

    YANG Qigui, CHANG Xiaolin, ZHOU Chuangbing, et al. Study of dam deformation control method for Shuibuya high concrete faced rockfill dam[J]. Rock and Soil Mechanics, 2010, 31(S2): 247-253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2046.htm

    [3]

    MA Hongqi, CHI Fudong. Technical progress on researches for the safety of high concrete-faced rockfill dams[J]. Engineering, 2016, 2(3): 148-163.

    [4] 曹克明, 汪易森, 张宗亮. 高混凝土面板堆石坝的设计与施工[J]. 水力发电, 2001, 27(10): 49-52, 72. doi: 10.3969/j.issn.0559-9342.2001.10.019

    CAO Keming, WANG Yisen, ZHANG Zongliang. Design and construction of high concrete face rockfill dam[J]. Water Power, 2001, 27(10): 49-52, 72. (in Chinese) doi: 10.3969/j.issn.0559-9342.2001.10.019

    [5] 郦能惠. 高混凝土面板堆石坝设计理念探讨[J]. 岩土工程学报, 2007, 29(8): 1143-1150. doi: 10.3321/j.issn:1000-4548.2007.08.005

    LI Nenghui. New concept of design for high concrete face rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1143-1150. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.005

    [6] 谭界雄, 王秘学, 高大水. 白云水电站混凝土面板堆石坝渗漏处理设计[J]. 大坝与安全, 2016(4): 1-5. doi: 10.3969/j.issn.1671-1092.2016.04.002

    TAN Jiexiong, WANG Mixue, GAO Dashui. Seepage treatment design for concrete face rockfill dam of Baiyun hydropower station[J]. Dam & Safety, 2016(4): 1-5. (in Chinese) doi: 10.3969/j.issn.1671-1092.2016.04.002

    [7] 周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报, 2015, 37(8): 1426-1432. doi: 10.11779/CJGE201508010

    ZHOU Mozhen, ZHANG Bingyin, ZHANG Zongliang, et al. Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1426-1432. (in Chinese) doi: 10.11779/CJGE201508010

    [8]

    COOKE J B. Concrete-faced rockfill dam[J]. International Water Power and Dam Construction, 1991, 43(1): 11-15.

    [9] 徐琨, 杨启贵. 水布垭面板堆石坝坝体后期变形时空分布规律研究[J]. 长江科学院院报, 2021, 38(7): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202107011.htm

    XU Kun, YANG Qigui. Spatiotemporal distribution of post-operation deformation of shuibuya concrete-faced rockfill dam[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(7): 51-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202107011.htm

    [10] 程展林, 丁红顺. 堆石料蠕变特性试验研究[J]. 岩土工程学报, 2004, 26(4): 473-476. doi: 10.3321/j.issn:1000-4548.2004.04.009

    CHENG Zhanlin, DING Hongshun. Creep test for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 473-476. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.009

    [11] 周伟, 胡颖, 杨启贵, 等. 高混凝土面板堆石坝流变机理及长期变形预测[J]. 水利学报, 2007, 38(增刊1): 100-105. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSL200711001019.htm

    ZHOU Wei, HU Ying, YANG Qigui, et al. Study on creep mechanism and long-term deformation prediction for high concrete face rockfill dam[J]. Journal of Hydraulic Engineering, 2007, 38(S1): 100-105. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSL200711001019.htm

    [12] 朱晟, 张远, 加力别克·阿哈力别克, 等. 基于增量分析的堆石坝瞬变-流变参数联合反演[J]. 岩土力学, 2021, 42(5): 1453-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105027.htm

    ZHU Sheng, ZHANG Yuan, JIALIBIEKE Ahalibieke, et al. Joint inversion method of instantaneous and creep parameters of rockfill dam based on incremental analysis[J]. Rock and Soil Mechanics, 2021, 42(5): 1453-1461. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105027.htm

    [13] 程展林, 潘家军. 水布垭面板堆石坝应力变形监测资料分析[J]. 岩土工程学报, 2012, 34(12): 2299-2306. http://cge.nhri.cn/cn/article/id/14944

    CHENG Zhanlin, PAN Jiajun. Analysis of monitoring data of stress and deformation for Shuibuya concrete face rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2299-2306. (in Chinese) http://cge.nhri.cn/cn/article/id/14944

    [14] 甘孝清, 杨弘, 宁晶. 白莲河抽水蓄能电站面板堆石坝监测设计与监测资料分析[J]. 大坝与安全, 2014(1): 50-53, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-DBAQ201401017.htm

    GAN Xiaoqing, YANG Hong, NING Jing. Monitoring design and data analysis of concrete faced rockfill dam of Bailianhe pumped storage station[J]. Dam & Safety, 2014(1): 50-53, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBAQ201401017.htm

    [15] 李文红, 濮久武. 滩坑混凝土面板坝变形监测与分析[J]. 水电自动化与大坝监测, 2013, 37(3): 51-55. doi: 10.3969/j.issn.1671-3893.2013.03.015

    LI Wenhong, PU Jiuwu. Deformation monitoring and analysis for tankeng concrete face rockfill dam[J]. Hydropower Automation and Dam Monitoring, 2013, 37(3): 51-55. (in Chinese) doi: 10.3969/j.issn.1671-3893.2013.03.015

    [16] 李为, 苗喆. 察汗乌苏面板坝监测资料分析[J]. 水利水运工程学报, 2012(5): 30-35. doi: 10.3969/j.issn.1009-640X.2012.05.006

    LI Wei, MIAO Zhe. Stress and deformation analysis of Chahanwusu concrete face rockfill dam(CFRD) based on monitoring data[J]. Hydro-Science and Engineering, 2012(5): 30-35. (in Chinese) doi: 10.3969/j.issn.1009-640X.2012.05.006

    [17] 傅世平. 混凝土面板堆石坝监测资料分析与安全评价[D]. 杭州: 浙江大学, 2007.

    FU Shiping. Observations Analysis and Safety Evaluation of Concrete Face Rock-Fill Dam[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)

    [18]

    DASCAL O. Postconstruction deformations of rockfill dams[J]. Journal of Geotechnical Engineering, 1987, 113(1): 46-59. doi: 10.1061/(ASCE)0733-9410(1987)113:1(46)

    [19]

    CLEMENTS R P. Post-construction deformation of rockfill dams[J]. Journal of Geotechnical Engineering, 1984, 110(7): 821-840. doi: 10.1061/(ASCE)0733-9410(1984)110:7(821)

    [20]

    GURBUZ A, PEKER I. Monitored performance of a concrete-faced sand-gravel dam[J]. Journal of Performance of Constructed Facilities, 2016, 30(5): 401-601.

    [21] 杨旭前. 库水位升降变化对关门山水库大坝应力和面板脱空的影响分析[J]. 中国水能及电气化, 2021(4): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-NCSD202104012.htm

    YANG Xuqian. Analysis of the influence of reservoir water level change on the dam stress and face slab disengagement of Guanmenshan Reservoir[J]. China Water Power & Electrification, 2021(4): 47-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NCSD202104012.htm

    [22] 党发宁, 杨超, 薛海斌, 等. 河谷形状对面板堆石坝变形特性的影响研究[J]. 水利学报, 2014, 45(4): 435-442. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201404008.htm

    DANG Faning, YANG Chao, XUE Haibin, et al. The effect of valley topography on deformation properties of CFRD[J]. Journal of Hydraulic Engineering, 2014, 45(4): 435-442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201404008.htm

    [23] 李炎隆, 卜鹏, 吴海波, 等. 面板堆石坝混凝土面板脱空影响因素敏感性分析[J]. 应用力学学报, 2022, 39(6): 1108-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202206011.htm

    LI Yanlong, BU Peng, WU Haibo, et al. Sensitivity analysis of influencing factors of separation between concrete face and cushion layer of CFRD[J]. Chinese Journal of Applied Mechanics, 2022, 39(6): 1108-1116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202206011.htm

    [24] 皮军华, 杨威, 李婧. 水布垭面板堆石坝运行初期水上部分面板脱空检测与分析[J]. 水电与新能源, 2020, 34(3): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD202003018.htm

    PI Junhua, YANG Wei, LI Jing. Detection and analysis of face slab void above water in early operation stage of shuibuya concrete face rockfill dam[J]. Hydropower and New Energy, 2020, 34(3): 67-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD202003018.htm

    [25] 徐昆振, 段国学, 丁林, 等. 水布垭面板坝堆石体安全监测成果分析[J]. 水电与抽水蓄能, 2019, 5(6): 58-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC201906014.htm

    XU Kunzhen, DUAN Guoxue, DING Lin, et al. Analysis on monitoring results of the rockfill of shuibuya CFRD[J]. Hydropower and Pumped Storage, 2019, 5(6): 58-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC201906014.htm

    [26] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

图(12)  /  表(3)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  64
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回