Experimental study on instability destruction of slab-failure brittle rock under influences of loading rates
-
摘要: 深部脆性岩体开挖常发生板裂破坏,并可能进一步发生片帮剥落、岩爆等工程灾害,严重威胁深埋隧(巷)道施工安全。在深部岩体工程中,受构造应力、开挖条件和工程扰动等因素的影响,岩体开挖后应力重分布的速率、来压快慢均存在差别。为探究加载速率对板裂围岩失稳破坏的影响,采用脆性岩石加工成的板裂试样进行单侧限单轴压缩试验,对不同加载速率下试样宏观破裂、强度特性、声发射(AE)特征以及能量机制进行综合研究。结果表明:①低加载速率下试样发生大块剥落,整体失稳并发生分离,高加载速率下试样未发生大块分离,但有小块动力弹射现象;②低频、高幅信号的增多及b值的变化表明试样产生了突发式的裂纹失稳扩展,且这个过程中大小尺度破裂不断交替产生;③在平稳加载阶段,高加载速率使试样AE活动更加剧烈,而临近失稳及失稳破坏阶段则相反,且低加载速率下低频信号、大尺度破裂事件占比更大。因不同开挖方案、施工方法导致的围岩应力重布快慢差异,在工程上会导致围岩发生板裂后,进一步诱发不同模式破坏。Abstract: Excavation of deep brittle rock often leads to slab failure, and may further to flake spalling, rock explosion and other engineering disasters, which is a serious threat to the safety of construction of deeply buried tunnels. In deep rock mass engineering, the rate of stress redistribution after excavation varies due to the factors such as tectonic stress, excavation conditions and engineering disturbances. In order to investigate the effects of loading rates on the destabilization damage of slab-failure surrounding rock, the unilateral limit uniaxial compression tests are conducted using brittle rock processed into slab-failure specimens, and the macroscopic rupture, strength characteristics, acoustic emission (AE) characteristics and energy mechanism of the specimens are comprehensively investigated under different loading rates. The results show that: (1) The specimens exhibit large pieces of spalling, overall instability and separation under low loading rates. The specimens did not separate in large pieces under high loading rates, but there are small pieces of power ejection. The compressive strength of the specimens increases with the increase of the loading rates. (2) The increase of low frequency and high amplitude signals and the change of b-value indicate that the specimens have a sudden failure instability propagation, and the large- and small-scale fractures are alternately generated during this process. (3) At the steady loading stage, the high loading rates make the AE activity of the specimens more intense, while the opposite is true at the near destabilization damage stages, and the low-frequency signal and large-scale fracture events account for a greater proportion under low loading rates. The difference in the speed of stress re-distribution due to different excavation schemes and construction methods in engineering is the cause of further damage in different modes after the occurrence of slab failure in the surrounding rock.
-
Keywords:
- slab failure /
- acoustic emission /
- brittle rock /
- parameter analysis /
- failure mode
-
-
表 1 不同加载速率下能量密度
Table 1 Energy densities under different loading rates
加载速率/(kN·s-1) 释放弹性能Uef-Ues /(104 J·m-3) 剩余弹性能Ues /(104 J·m-3) 峰后总耗散能加动能Uds+Uk /(104 J·m-3) 0.10 2.65 0.81 5.41 0.25 3.84 0.67 7.65 0.50 4.29 0.88 7.27 1.00 3.71 1.17 6.15 2.00 3.74 1.23 6.02 -
[1] FENG X T, GUO H S, YANG C X, et al. In situ observation and evaluation of zonal disintegration affected by existing fractures in deep hard rock tunneling[J]. Engineering Geology, 2018, 242: 1-11. doi: 10.1016/j.enggeo.2018.05.019
[2] XIE H P, GAO M Z, ZHANG R, et al. Study on the mechanical properties and mechanical response of coal mining at 1000 m or deeper[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1475-1490. doi: 10.1007/s00603-018-1509-y
[3] ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59-65. doi: 10.1016/0886-7798(94)90010-8
[4] 周辉, 卢景景, 徐荣超, 等. 深埋硬岩隧洞围岩板裂化破坏研究的关键问题及研究进展[J]. 岩土力学, 2015, 36(10): 2737-2749. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510001.htm ZHOU Hui, LU Jingjing, XU Rongchao, et al. Critical problems of study of slabbing failure of surrounding rock in deep hard rock tunnel and research progress[J]. Rock and Soil Mechanics, 2015, 36(10): 2737-2749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510001.htm
[5] FAIRHURST C, COOK N. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface[C]//International Society of Rock Mechanics. Lisbon, 1966.
[6] MARTIN C D, MAYBEE W G. The strength of hard-rock pillars[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(8): 1239-1246. doi: 10.1016/S1365-1609(00)00032-0
[7] CAI M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 763-772. doi: 10.1016/j.ijrmms.2007.07.026
[8] DIEDERICHS M S, KAISER P K, EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812. doi: 10.1016/j.ijrmms.2004.02.003
[9] 侯哲生, 龚秋明, 孙卓恒. 锦屏二级水电站深埋完整大理岩基本破坏方式及其发生机制[J]. 岩石力学与工程学报, 2011, 30(4): 727-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104012.htm HOU Zhesheng, GONG Qiuming, SUN Zhuoheng. Primary failure types and their failure mechanisms of deep buried and intact marble at Jinping Ⅱ hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 727-732. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104012.htm
[10] 吴世勇, 龚秋明, 王鸽, 等. 锦屏Ⅱ级水电站深部大理岩板裂化破坏试验研究及其对TBM开挖的影响[J]. 岩石力学与工程学报, 2010, 29(6): 1089-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006003.htm WU Shiyong, GONG Qiuming, WANG Ge, et al. Experimental study of slabbing failure for deepburied marble at Jinping Ⅱ hydropower station and its influences on TBM excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1089-1095. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006003.htm
[11] ZHANG C Q, FENG X T, ZHOU H, et al. Case histories of four extremely intense rockbursts in deep tunnels[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275-288. doi: 10.1007/s00603-011-0218-6
[12] DIEDERICHS M S. The 2003 Canadian Geotechnical Colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082-1116. doi: 10.1139/T07-033
[13] 周辉, 徐荣超, 卢景景, 等. 板裂化模型试样失稳破坏及其裂隙扩展特征的试验研究[J]. 岩土力学, 2015, 36(增刊2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2001.htm ZHOU Hui, XU Rongchao, LU Jingjing, et al. Experimental study of instability destruction and crack propagation characteristics of slab failure model specimen[J]. Rock and Soil Mechanics, 2015, 36(S2): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2001.htm
[14] 周喻, 孙铮, 王莉, 等. 单侧限压缩下预制裂隙试样力学特性及板裂化机制细观研究[J]. 岩土力学, 2018, 39(12): 4385-4394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812012.htm ZHOU Yu, SUN Zheng, WANG Li, et al. Meso research on mechanical properties and slab failure mechanism of pre-fractured rock mass under the condition of one side restriction loading[J]. Rock and Soil Mechanics, 2018, 39(12): 4385-4394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812012.htm
[15] 魏新江, 陈涛涛, 王霄, 等. 考虑板间相互作用的圆形隧洞板裂屈曲型岩爆力学分析[J]. 岩土力学, 2020, 41(11): 3680-3686. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011019.htm WEI Xinjiang, CHEN Taotao, WANG Xiao, et al. Mechanical analysis of slab buckling rockburst in circular tunnel considering the interaction between rock plates[J]. Rock and Soil Mechanics, 2020, 41(11): 3680-3686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011019.htm
[16] 冯帆, 李夕兵, 李地元, 等. 正交各向异性板裂屈曲岩爆机制与控制对策研究[J]. 岩土工程学报, 2017, 39(7): 1302-1311. doi: 10.11779/CJGE201707017 FENG Fan, LI Xibing, LI Diyuan, et al. Mechanism and control strategy of buckling rockbursts of orthotropic slab[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1302-1311. (in Chinese) doi: 10.11779/CJGE201707017
[17] 储超群, 吴顺川, 曹振生, 等. 基于声发射技术的花岗岩破裂特征试验研究[J]. 中南大学学报(自然科学版), 2021, 52(8): 2919-2932. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108036.htm CHU Chaoqun, WU Shunchuan, CAO Zhensheng, et al. Experimental research on fracture characteristics of granite with acoustic emission technology[J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2919-2932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108036.htm
[18] GUO P, WU S C, ZHANG G, et al. Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104820. doi: 10.1016/j.ijrmms.2021.104820
[19] ZHAO Y S, CHEN C C, WU S C, et al. Effects of 2D & 3D nonparallel flaws on failure characteristics of brittle rock-like samples under uniaxial compression: insights from acoustic emission and DIC monitoring[J]. Theoretical and Applied Fracture Mechanics, 2022, 120: 103391. doi: 10.1016/j.tafmec.2022.103391
[20] WALTER W R, BRUNE J N. Spectra of seismic radiation from a tensile crack[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4449-4459. doi: 10.1029/92JB02414
[21] OHNAKA M, MOGI K. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B5): 3873-3884. doi: 10.1029/JB087iB05p03873
[22] 秦四清, 李造鼎. 岩石声发射事件在空间上的分形分布研究[J]. 应用声学, 1992, 11(4): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN199204003.htm QIN Siqing, LI Zaoding. Study on fractal distribution of rock acoustic emission events in space[J]. Applied Acoustics, 1992, 11(4): 19-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN199204003.htm
[23] RAO M V M S, LAKSHMI K P. Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture[J]. Current Science, 2005, 89: 1577-1582.
[24] 曾正文, 马瑾, 刘力强, 等. 岩石破裂扩展过程中的声发射b值动态特征及意义[J]. 地震地质, 1995, 17(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ501.001.htm ZENG Zhengwen, MA Jin, LIU Liqiang, et al. AE b-value dynamic features durine rockmass fracturing and their significances[J]. Seismology and Geology, 1995, 17(1): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ501.001.htm
[25] 张志镇. 岩石变形破坏过程中的能量演化机制[D]. 徐州: 中国矿业大学, 2013. ZHANG Zhizhen. Energy Evolution Mechanism during Rock Deformation and Failure[D]. Xuzhou: China University of Mining and Technology, 2013. (in Chinese)
[26] 谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729-1740. doi: 10.3321/j.issn:1000-6915.2008.09.001 XIE Heping, JU Yang, LI Liyun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729-1740. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.001
[27] 储超群, 吴顺川, 张诗淮, 等. 层状砂岩力学行为各向异性与破裂特征[J]. 中南大学学报(自然科学版), 2020, 51(8): 2232-2246. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202008018.htm CHU Chaoqun, WU Shunchuan, ZHANG Shihuai, et al. Mechanical behavior anisotropy and fracture characteristics of bedded sandstone[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2232-2246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202008018.htm
-
其他相关附件