• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

加载速率影响下板裂化脆性岩石失稳破坏试验研究

金爱兵, 陈龙, 吴顺川, 郭沛, 孙贝贝

金爱兵, 陈龙, 吴顺川, 郭沛, 孙贝贝. 加载速率影响下板裂化脆性岩石失稳破坏试验研究[J]. 岩土工程学报, 2024, 46(6): 1215-1225. DOI: 10.11779/CJGE20230241
引用本文: 金爱兵, 陈龙, 吴顺川, 郭沛, 孙贝贝. 加载速率影响下板裂化脆性岩石失稳破坏试验研究[J]. 岩土工程学报, 2024, 46(6): 1215-1225. DOI: 10.11779/CJGE20230241
JIN Aibing, CHEN Long, WU Shunchuan, GUO Pei, SUN Beibei. Experimental study on instability destruction of slab-failure brittle rock under influences of loading rates[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1215-1225. DOI: 10.11779/CJGE20230241
Citation: JIN Aibing, CHEN Long, WU Shunchuan, GUO Pei, SUN Beibei. Experimental study on instability destruction of slab-failure brittle rock under influences of loading rates[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1215-1225. DOI: 10.11779/CJGE20230241

加载速率影响下板裂化脆性岩石失稳破坏试验研究  English Version

基金项目: 

国家重点研发计划项目 2022YFC2905102

国家自然科学基金项目 51934003

国家自然科学基金项目 52174106

云南省重大科技项目 202202 AG050014

详细信息
    作者简介:

    金爱兵(1974—),男,博士,教授,主要从事岩石力学与工程方面的教学与研究工作。E-mail: jinaibing@ustb.edu.cn

    通讯作者:

    吴顺川, E-mail: wushunchuan@kust.edu.cn

  • 中图分类号: TU452

Experimental study on instability destruction of slab-failure brittle rock under influences of loading rates

  • 摘要: 深部脆性岩体开挖常发生板裂破坏,并可能进一步发生片帮剥落、岩爆等工程灾害,严重威胁深埋隧(巷)道施工安全。在深部岩体工程中,受构造应力、开挖条件和工程扰动等因素的影响,岩体开挖后应力重分布的速率、来压快慢均存在差别。为探究加载速率对板裂围岩失稳破坏的影响,采用脆性岩石加工成的板裂试样进行单侧限单轴压缩试验,对不同加载速率下试样宏观破裂、强度特性、声发射(AE)特征以及能量机制进行综合研究。结果表明:①低加载速率下试样发生大块剥落,整体失稳并发生分离,高加载速率下试样未发生大块分离,但有小块动力弹射现象;②低频、高幅信号的增多及b值的变化表明试样产生了突发式的裂纹失稳扩展,且这个过程中大小尺度破裂不断交替产生;③在平稳加载阶段,高加载速率使试样AE活动更加剧烈,而临近失稳及失稳破坏阶段则相反,且低加载速率下低频信号、大尺度破裂事件占比更大。因不同开挖方案、施工方法导致的围岩应力重布快慢差异,在工程上会导致围岩发生板裂后,进一步诱发不同模式破坏。
    Abstract: Excavation of deep brittle rock often leads to slab failure, and may further to flake spalling, rock explosion and other engineering disasters, which is a serious threat to the safety of construction of deeply buried tunnels. In deep rock mass engineering, the rate of stress redistribution after excavation varies due to the factors such as tectonic stress, excavation conditions and engineering disturbances. In order to investigate the effects of loading rates on the destabilization damage of slab-failure surrounding rock, the unilateral limit uniaxial compression tests are conducted using brittle rock processed into slab-failure specimens, and the macroscopic rupture, strength characteristics, acoustic emission (AE) characteristics and energy mechanism of the specimens are comprehensively investigated under different loading rates. The results show that: (1) The specimens exhibit large pieces of spalling, overall instability and separation under low loading rates. The specimens did not separate in large pieces under high loading rates, but there are small pieces of power ejection. The compressive strength of the specimens increases with the increase of the loading rates. (2) The increase of low frequency and high amplitude signals and the change of b-value indicate that the specimens have a sudden failure instability propagation, and the large- and small-scale fractures are alternately generated during this process. (3) At the steady loading stage, the high loading rates make the AE activity of the specimens more intense, while the opposite is true at the near destabilization damage stages, and the low-frequency signal and large-scale fracture events account for a greater proportion under low loading rates. The difference in the speed of stress re-distribution due to different excavation schemes and construction methods in engineering is the cause of further damage in different modes after the occurrence of slab failure in the surrounding rock.
  • 图  1   试验设备、试样设计及声发射系统工作流程

    Figure  1.   Test equipments, specimen design and workflow of acoustic emission system

    图  2   不同加载速率下试样宏观破裂行为

    Figure  2.   Macro-fracture behaviors of specimens under different loading rates

    图  3   不同加载速率下完整试样宏观破裂

    Figure  3.   Macro-fracture of complete specimens under different loading rates

    图  4   试样强度特性曲线

    Figure  4.   Strength characteristic curves of specimens

    图  5   不同加载速率下AE事件率、AE累计事件数和应力与时间的关系

    Figure  5.   AE event rate, cumulative number of AE events and stress versus time under different loading rates

    图  6   不同加载速率下试样的AE主频-幅值-时间变化图

    Figure  6.   Variation of AE frequency-amplitude-time of specimens under different loading rates

    图  7   不同加载速率下试样AE信号主频分布

    Figure  7.   Distribution of dominant frequency of AE signals of specimens under different loading rates

    图  8   不同应力阶段下低频AE信号占比

    Figure  8.   Percentages of low dominant frequency AE signals under different stress stages

    图  9   不同加载速率下b值、应力及AE事件率随时间变化示意图

    Figure  9.   Variation of b-value, stress and AE event rate with time under different loading rates

    图  10   峰值及峰后能量计算示意图

    Figure  10.   Calculation of peak and post-peak energy

    表  1   不同加载速率下能量密度

    Table  1   Energy densities under different loading rates

    加载速率/(kN·s-1) 释放弹性能Uef-Ues /(104 J·m-3) 剩余弹性能Ues /(104 J·m-3) 峰后总耗散能加动能Uds+Uk /(104 J·m-3)
    0.10 2.65 0.81 5.41
    0.25 3.84 0.67 7.65
    0.50 4.29 0.88 7.27
    1.00 3.71 1.17 6.15
    2.00 3.74 1.23 6.02
    下载: 导出CSV
  • [1]

    FENG X T, GUO H S, YANG C X, et al. In situ observation and evaluation of zonal disintegration affected by existing fractures in deep hard rock tunneling[J]. Engineering Geology, 2018, 242: 1-11. doi: 10.1016/j.enggeo.2018.05.019

    [2]

    XIE H P, GAO M Z, ZHANG R, et al. Study on the mechanical properties and mechanical response of coal mining at 1000 m or deeper[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1475-1490. doi: 10.1007/s00603-018-1509-y

    [3]

    ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59-65. doi: 10.1016/0886-7798(94)90010-8

    [4] 周辉, 卢景景, 徐荣超, 等. 深埋硬岩隧洞围岩板裂化破坏研究的关键问题及研究进展[J]. 岩土力学, 2015, 36(10): 2737-2749. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510001.htm

    ZHOU Hui, LU Jingjing, XU Rongchao, et al. Critical problems of study of slabbing failure of surrounding rock in deep hard rock tunnel and research progress[J]. Rock and Soil Mechanics, 2015, 36(10): 2737-2749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510001.htm

    [5]

    FAIRHURST C, COOK N. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface[C]//International Society of Rock Mechanics. Lisbon, 1966.

    [6]

    MARTIN C D, MAYBEE W G. The strength of hard-rock pillars[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(8): 1239-1246. doi: 10.1016/S1365-1609(00)00032-0

    [7]

    CAI M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 763-772. doi: 10.1016/j.ijrmms.2007.07.026

    [8]

    DIEDERICHS M S, KAISER P K, EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812. doi: 10.1016/j.ijrmms.2004.02.003

    [9] 侯哲生, 龚秋明, 孙卓恒. 锦屏二级水电站深埋完整大理岩基本破坏方式及其发生机制[J]. 岩石力学与工程学报, 2011, 30(4): 727-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104012.htm

    HOU Zhesheng, GONG Qiuming, SUN Zhuoheng. Primary failure types and their failure mechanisms of deep buried and intact marble at Jinping Ⅱ hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 727-732. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104012.htm

    [10] 吴世勇, 龚秋明, 王鸽, 等. 锦屏Ⅱ级水电站深部大理岩板裂化破坏试验研究及其对TBM开挖的影响[J]. 岩石力学与工程学报, 2010, 29(6): 1089-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006003.htm

    WU Shiyong, GONG Qiuming, WANG Ge, et al. Experimental study of slabbing failure for deepburied marble at Jinping Ⅱ hydropower station and its influences on TBM excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1089-1095. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006003.htm

    [11]

    ZHANG C Q, FENG X T, ZHOU H, et al. Case histories of four extremely intense rockbursts in deep tunnels[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275-288. doi: 10.1007/s00603-011-0218-6

    [12]

    DIEDERICHS M S. The 2003 Canadian Geotechnical Colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082-1116. doi: 10.1139/T07-033

    [13] 周辉, 徐荣超, 卢景景, 等. 板裂化模型试样失稳破坏及其裂隙扩展特征的试验研究[J]. 岩土力学, 2015, 36(增刊2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2001.htm

    ZHOU Hui, XU Rongchao, LU Jingjing, et al. Experimental study of instability destruction and crack propagation characteristics of slab failure model specimen[J]. Rock and Soil Mechanics, 2015, 36(S2): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2001.htm

    [14] 周喻, 孙铮, 王莉, 等. 单侧限压缩下预制裂隙试样力学特性及板裂化机制细观研究[J]. 岩土力学, 2018, 39(12): 4385-4394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812012.htm

    ZHOU Yu, SUN Zheng, WANG Li, et al. Meso research on mechanical properties and slab failure mechanism of pre-fractured rock mass under the condition of one side restriction loading[J]. Rock and Soil Mechanics, 2018, 39(12): 4385-4394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812012.htm

    [15] 魏新江, 陈涛涛, 王霄, 等. 考虑板间相互作用的圆形隧洞板裂屈曲型岩爆力学分析[J]. 岩土力学, 2020, 41(11): 3680-3686. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011019.htm

    WEI Xinjiang, CHEN Taotao, WANG Xiao, et al. Mechanical analysis of slab buckling rockburst in circular tunnel considering the interaction between rock plates[J]. Rock and Soil Mechanics, 2020, 41(11): 3680-3686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011019.htm

    [16] 冯帆, 李夕兵, 李地元, 等. 正交各向异性板裂屈曲岩爆机制与控制对策研究[J]. 岩土工程学报, 2017, 39(7): 1302-1311. doi: 10.11779/CJGE201707017

    FENG Fan, LI Xibing, LI Diyuan, et al. Mechanism and control strategy of buckling rockbursts of orthotropic slab[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1302-1311. (in Chinese) doi: 10.11779/CJGE201707017

    [17] 储超群, 吴顺川, 曹振生, 等. 基于声发射技术的花岗岩破裂特征试验研究[J]. 中南大学学报(自然科学版), 2021, 52(8): 2919-2932. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108036.htm

    CHU Chaoqun, WU Shunchuan, CAO Zhensheng, et al. Experimental research on fracture characteristics of granite with acoustic emission technology[J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2919-2932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108036.htm

    [18]

    GUO P, WU S C, ZHANG G, et al. Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104820. doi: 10.1016/j.ijrmms.2021.104820

    [19]

    ZHAO Y S, CHEN C C, WU S C, et al. Effects of 2D & 3D nonparallel flaws on failure characteristics of brittle rock-like samples under uniaxial compression: insights from acoustic emission and DIC monitoring[J]. Theoretical and Applied Fracture Mechanics, 2022, 120: 103391. doi: 10.1016/j.tafmec.2022.103391

    [20]

    WALTER W R, BRUNE J N. Spectra of seismic radiation from a tensile crack[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4449-4459. doi: 10.1029/92JB02414

    [21]

    OHNAKA M, MOGI K. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B5): 3873-3884. doi: 10.1029/JB087iB05p03873

    [22] 秦四清, 李造鼎. 岩石声发射事件在空间上的分形分布研究[J]. 应用声学, 1992, 11(4): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN199204003.htm

    QIN Siqing, LI Zaoding. Study on fractal distribution of rock acoustic emission events in space[J]. Applied Acoustics, 1992, 11(4): 19-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN199204003.htm

    [23]

    RAO M V M S, LAKSHMI K P. Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture[J]. Current Science, 2005, 89: 1577-1582.

    [24] 曾正文, 马瑾, 刘力强, 等. 岩石破裂扩展过程中的声发射b值动态特征及意义[J]. 地震地质, 1995, 17(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ501.001.htm

    ZENG Zhengwen, MA Jin, LIU Liqiang, et al. AE b-value dynamic features durine rockmass fracturing and their significances[J]. Seismology and Geology, 1995, 17(1): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ501.001.htm

    [25] 张志镇. 岩石变形破坏过程中的能量演化机制[D]. 徐州: 中国矿业大学, 2013.

    ZHANG Zhizhen. Energy Evolution Mechanism during Rock Deformation and Failure[D]. Xuzhou: China University of Mining and Technology, 2013. (in Chinese)

    [26] 谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729-1740. doi: 10.3321/j.issn:1000-6915.2008.09.001

    XIE Heping, JU Yang, LI Liyun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729-1740. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.001

    [27] 储超群, 吴顺川, 张诗淮, 等. 层状砂岩力学行为各向异性与破裂特征[J]. 中南大学学报(自然科学版), 2020, 51(8): 2232-2246. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202008018.htm

    CHU Chaoqun, WU Shunchuan, ZHANG Shihuai, et al. Mechanical behavior anisotropy and fracture characteristics of bedded sandstone[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2232-2246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202008018.htm

图(10)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-19
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回