On complexity of soil
-
摘要: 土的复杂性使人很难对其严密地定名与分类,几乎不可能精准地预测其行为。土的复杂性来源于其是天然的产物和碎散的颗粒集合体。土的天然属性使其具有三相组成,土中水成为土力学中理论上的难点,也常常是一切地质灾害与工程事故的根源。土力学教学中所谓的土是被简单化了的,与大自然中的原状土有着很大的差别。土的碎散性使其受力变形性状与物理性质相耦合,在受力变形的过程中其组成、状态、结构都处于不断地变化中,这就是其力学性质非常复杂的主要原因。通过DDA(Discontinuous deformation analysis)分析揭示了土颗粒运动与土的各种变形特性间的联系;土的湿化试验表明了塑性应变是度量土的应力-应变特性的主要因素。人类与土之间有着长期的密切的关系,土作为人类的载体、材料、工具与武器,是人类须臾不可离开的东西。在长期的生活与生产过程中,人们积累了关于土的丰富的经验,也吸取了很多教训。至今经验性的方法仍然是在岩土工程的综合判断与工程决策中的基本方法。Abstract: The complexity of soil makes it difficult to name and classify it strictly, and it is almost impossible to predict its behavior accurately. The complexity of soil comes from that it is a natural product and a collection of fragmentary particles. The natural attribute of soil makes it have three-phase composition, and among them, the water in soil causes theoretical difficulties in soil mechanics, and is also the source of almost all geological disasters and engineering accidents. The so-called soil is simplified in soil mechanics teaching, and it is greatly different from the undisturbed soil in nature. In fragmentary soil, its mechanical deformation couples with physical properties, and its composition, state and structure are constantly changing in the process of stress deformation, which is the main reason why its mechanical properties are very complex. The relationship between the movement of soil particles and the various deformation characteristics of soil is revealed through DDA. The wetting tests of soil show that the plastic strain is the main factor to measure the stress-strain characteristics of soil. There is a long and close relationship between the humans and the soil, and as the carrier, material, tool and weapon of mankind, the soil is an indispensable thing for mankind. In the process of long-term life and production, people have accumulated rich experience about soil and learned a lot of lessons. Up to now, the empiricism is still the basic method in the comprehensive judgment and engineering decision-making of geotechnical engineering.
-
Keywords:
- complexity /
- natural product /
- fragmentary composition /
- empiricism /
- geotechnical triangle
-
致谢: 感谢介玉新,朱自立,朱洪在附图方面给予的帮助。
-
表 1 变形模量与压缩模量间的经验关系
Table 1 Empirical relationship between deformation modulus and constrained modulus
土类 E0/Es 土类 E0/Es 变化范围 平均值 变化范围 平均值 老黏土 1.45~2.80 2.11 新近沉积黏性土 0.35~1.94 0.93 一般黏性土 0.60~2.80 1.35 新近沉积淤泥质土 1.05~2.97 1.90 表 2 淤泥质土的强度指标
Table 2 Strength indexes of silty soil
土层 无侧限抗压强度 十字板剪切 qu/kPa cu/kPa ④1 25.34 28.4 ⑥1 24.06 34.1 表 3 加载与卸载极限状态的P1/P3
Table 3 P1/P3 at critical state of loading and unloading
状态 α/(°) P1/P3 加载 卸载 初始—峰值 30 3.732 1.000 峰值强度以后 35 2.748 0.839 残余强度 45 1.732 0.577 -
[1] 恩格斯. 自然辩证法[M]. 北京: 人民出版社, 1971. Engels. Dialectics of Nature[M]. Beijing: People's Publishing Hous 1971. (in Chinese)
[2] POOROOSHASB H B. The last lecture[C]// Ptoceedings of the 7th International Symposium on Lowland Technology. Saga, 2010.
[3] KNODEL P C, BIANCHINI G, SAADA A, et al. Complex stress paths and validation of constitutive models[J]. Geotechnical Testing Journal, 1991, 14(1): 13. doi: 10.1520/GTJ10187J
[4] 建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012. Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)
[5] 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008. Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)
[6] GB/T 50941—2014建筑地基基础术语标准[S]. 北京: 中国建筑工业出版社, 2014. GB/T 50941—2014 Standard for Terms Used in Building Foundation[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
[7] TERZAGHI K. Soil Moisture and Capillary in Soil[M]. New York: McGraw-Hill book Co., 1969.
[8] 顾宝和. 岩土之问[M]. 北京: 中国建筑工业出版社, 2023. GU Baohe. Questions about Rock and Soil[M]. Beijing: China Architecture & Building Press, 2023. (in Chinese)
[9] 顾晓鲁, 郑刚, 刘畅. 地基与基础[M]. 4版. 北京: 中国建筑工业出版社, 2019. GU Xiaolu, ZHENG Gang, LIU Chang. Foundation and Foundation[M]. 4th ed. Beijing: China Architecture & Building Press, 2019. (in Chinese)
[10] 顾宝和. 岩土工程典型案例述评[M]. 北京: 中国建筑工业出版社, 2015. GU Baohe. Review on Typical Cases of Geotechnical Engineering[M]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[11] TERZAGHI K. The Influence of Modern Soil Studies on the Design and Construction of Foundations[M]. London: Building Research Congress, 1951.
[12] LEE K L, SEED H B. Drained strength characteristics of sands[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(6): 117-141. doi: 10.1061/JSFEAQ.0001048
[13] 李广信. 应力路径对土的应力应变关系的影响[D]. 北京: 清华大学, 1980. LI Guangxin. Influence of Stress Path on Stress-Strain Relationship of Soil[D]. Beijing: Tsinghua University, 1980. (in Chinese)
[14] 李广信, 武世锋. 土的卸载体缩的试验研究及其机理探讨[J]. 岩土工程学报, 2002, 24(1): 47-50. http://cge.nhri.cn/cn/article/id/10869 LI Guangxin, WU Shifeng. Experimental research on volume-contraction of soil under unloading and examination of its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 47-50. (in Chinese) http://cge.nhri.cn/cn/article/id/10869
[15] 张国新, 李广信, 郭瑞平. 不连续变形分析与土的应力应变关系[J]. 清华大学学报(自然科学版), 2000, 40(8): 102-105. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200008029.htm ZHANG Guoxin, LI Guangxin, GUO Ruiping. Stress strain relationship for soil using discontinuous deformation analysis[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(8): 102-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200008029.htm
[16] 李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 28(1): 1-10. http://cge.nhri.cn/cn/article/id/11890 LI Guangxin. Characteristics and development of Tsinghua Elasto-plastic Model for soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 1-10. (in Chinese) http://cge.nhri.cn/cn/article/id/11890
[17] 李广信. 从息壤到土工合成材料[J]. 岩土工程学报, 2013, 35(1): 144-149. http://cge.nhri.cn/cn/article/id/14915 LI Guangxin. From "xi-rang" to geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 144-149. (in Chinese) http://cge.nhri.cn/cn/article/id/14915
[18] BURLAND J B. Nash lecture: the teaching of soil mechanics-a personal view[C] //Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering: Volume 3. Rotterdam: A A Balkema, 1989.
[19] BURLAND J B. ICE Manual of Geotechnical Engineering[M]. London: ICE Publishing, 2012.