• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

氧化还原电位对污染土固化体中砷浸出行为的影响

张文杰, 王仕方, 余海生, 李西斌

张文杰, 王仕方, 余海生, 李西斌. 氧化还原电位对污染土固化体中砷浸出行为的影响[J]. 岩土工程学报, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119
引用本文: 张文杰, 王仕方, 余海生, 李西斌. 氧化还原电位对污染土固化体中砷浸出行为的影响[J]. 岩土工程学报, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119
ZHANG Wenjie, WANG Shifang, YU Haisheng, LI Xibin. Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119
Citation: ZHANG Wenjie, WANG Shifang, YU Haisheng, LI Xibin. Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1039-1046. DOI: 10.11779/CJGE20230119

氧化还原电位对污染土固化体中砷浸出行为的影响  English Version

基金项目: 

国家自然科学基金项目 52078467

详细信息
    作者简介:

    张文杰(1978—),男,博士,教授,主要从事环境岩土工程方面的研究工作。E-mail: zhwjlyl@163.com

    通讯作者:

    王仕方,E-mail: mr_wsf@tzc.edu.cn

  • 中图分类号: TU449

Influences of redox potential on leaching behaviors of arsenic from a solidified contaminated soil

  • 摘要: 砷(As)的价态和迁移性与氧化还原电位(EH)密切相关,固化/稳定化后的As污染土处于复杂的氧化还原环境中,EH的变化可能导致固化体中As浸出风险增加,目前对EH变化情况下固化体中As浸出行为的研究尚不多见。通过半动态浸出试验研究了稳定化/固化修复后的高浓度As(Ⅲ)污染土在不同氧化还原条件下的As浸出行为,通过X射线衍射图谱(XRD)和X射线光电子能谱(XPS)研究了浸出试验前后土中矿物成分和As价态的变化,揭示了相关机理。结果表明,浸出液中As的浸出总量与浸提液EH密切相关,浸提液EH越低,As浸出浓度越高;当浸提液EH为0 mV时,As的扩散系数达到3.11×10−13 m2/s,可浸出指数达到了8.72,表明修复后的高浓度As(Ⅲ)污染土不适合在强还原性环境中堆放和再利用;XRD分析表明,随着浸提液EH降低,土中的铁氧化物/氢氧化物发生还原溶解,进一步导致As的解吸附;XPS分析表明,随着浸提液EH降低,土中的As(Ⅴ)被还原为高迁移性的As(Ⅲ),从而增加了As的潜在移动风险。该研究为高浓度As(Ⅲ)污染土的长期安全处置提供了科学依据。
    Abstract: The valence state and mobility of arsenic (As) are closely related to redox potential (EH). Changes in EH may lead to an increasing mobility risk of As in the stabilized/solidified soils when exposed to complex redox environments. At present, the influences of EH on the leaching behaviors of As from the solidified soils have received few attention. In this study, the semi-dynamic leaching tests under different EH are carried out to investigate the leaching behaviors of As from a stabilized/solidified heavily As(Ⅲ)-contaminated soil. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are performed to study the changes of mineral composition and the valence state of As. The results show that the total leached As in the leachate is closely related to EH of the leachant. The leached As concentration increases with a decrease in EH. When EH of the leachant is 0 mV, the diffusion coefficient of As reaches 3.11×10−13 m2/s, and its leachability index reaches 8.72, indicating that the treated heavily As(Ⅲ)-contaminated soil is not suitable for stacking and reuse under a strong reducing condition. The XRD analysis shows that as the leaching EH decreases, the reductive dissolution of iron oxides/hydroxides occurrs, which leads to the desorption of As. The XPS investigations indicate that as the leaching EH decreases, As(Ⅴ) in the soil is reduced to highly mobile As(Ⅲ), and the potential mobility risk of As increases. This study provides a scientific basis for the long-term safe disposal of heavily As(Ⅲ)-contaminated soils.
  • 图  1   自动控制pH和EH的半动态浸出试验系统

    Figure  1.   pH and EH automatic control system for semi-dynamic leaching tests

    图  2   As的浸出浓度随时间的变化

    Figure  2.   Variation of leached As concentration with leaching time

    图  3   As的CFL值随浸出时间的变化曲线

    Figure  3.   Variation of CFL of As with leaching time

    图  4   半动态浸出试验前后土样的XRD图谱

    Figure  4.   XRD patterns of specimens before and after semi-dynamic leaching tests

    图  5   半动态浸出试验前后土样的XPS图谱

    Figure  5.   XPS spectra before and after semi-dynamic leaching tests

    表  1   试验用土的金属含量

    Table  1   Metal contents in test soil

    金属元素 As Ca Fe Mn Al Mg
    含量/(mg·kg-1) 8.9 9650 13100 697 7700 2470
    下载: 导出CSV

    表  2   EH对As有效扩散系数De和可浸出指数LI的影响

    Table  2   Effects of EH on effective diffusion coefficient De and leachability index LI

    参数 De(0~6 d)/(m2·s-1) De(> 6 d)/(m2·s-1) LI
    0 mV 3.11×10-13 1.18×10-13 8.72
    200 mV 4.59×10-14 1.95×10-14 9.52
    400 mV 2.10×10-15 1.58×10-15 10.74
    下载: 导出CSV
  • [1]

    SONG P P, YANG Z H, ZENG G M, et al. Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review[J]. Chemical Engineering Journal, 2017, 317: 707-725. doi: 10.1016/j.cej.2017.02.086

    [2] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm

    Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution survey report[J]. China Environmental Protection Industry, 2014(5): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm

    [3] 赵述华, 张太平, 陈志良, 等. 金矿区高浓度砷污染土壤的稳定化处理[J]. 环境工程学报, 2016, 10(10): 5987-5994. doi: 10.12030/j.cjee.201505193

    ZHAO Shuhua, ZHANG Taiping, CHEN Zhiliang, et al. Stabilization treatment of high concentration of As contaminated soils from gold mining area[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5987-5994. (in Chinese) doi: 10.12030/j.cjee.201505193

    [4] 项萌, 张国平, 李玲, 等. 广西河池铅锑矿冶炼区土壤中锑等重金属的分布特征及影响因素分析[J]. 地球与环境, 2010, 38(4): 495-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201004019.htm

    XIANG Meng, ZHANG Guoping, LI Ling, et al. The characteristics of heavy metals in soil around the Hechi antimony-lead smelter, Guangxi, China[J]. Earth and Environment, 2010, 38(4): 495-500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201004019.htm

    [5]

    FERREIRA R T, SILVA A R C, PIMENTEL C, et al. Arsenic stress elicits cytosolic Ca2+ bursts and Crz1 activation in Saccharomyces cerevisiae[J]. Microbiology, 2012, 158(9): 2293-2302. doi: 10.1099/mic.0.059170-0

    [6]

    CONNER J R, HOEFFNER S L. The history of stabilization/solidification technology[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(4): 325-396. doi: 10.1080/10643389891254241

    [7] 杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. doi: 10.3969/j.issn.1000-7598.2011.01.019

    DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.019

    [8] 查甫生, 刘晶晶, 许龙, 等. 水泥固化重金属污染土干湿循环特性试验研究[J]. 岩土工程学报, 2013, 35(7): 1246-1252. http://cge.nhri.cn/cn/article/id/15114

    ZHA Fusheng, LIU Jingjing, XU Long, et al. Cyclic wetting and drying tests on heavy metal contaminated soils solidified/stabilized by cement[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1246-1252. (in Chinese) http://cge.nhri.cn/cn/article/id/15114

    [9] 查甫生, 许龙, 崔可锐. 水泥固化重金属污染土的强度特性试验研究[J]. 岩土力学, 2012, 33(3): 652-656, 664. doi: 10.3969/j.issn.1000-7598.2012.03.002

    ZHA Fusheng, XU Long, CUI Kerui. Strength characteristics of heavy metal contaminated soils stabilized/solidified by cement[J]. Rock and Soil Mechanics, 2012, 33(3): 652-656, 664. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.03.002

    [10]

    DUARTE A L, DABOIT K, OLIVEIRA M L S, et al. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area[J]. Geoscience Frontiers, 2019, 10(3): 927-939. doi: 10.1016/j.gsf.2018.05.005

    [11]

    LI J S, BEIYUAN J Z, TSANG D C W, et al. Arsenic-containing soil from geogenic source in Hong Kong: leaching characteristics and stabilization/solidification[J]. Chemosphere, 2017, 182: 31–39. doi: 10.1016/j.chemosphere.2017.05.019

    [12] 肖劲光, 刘喜, 肖武, 等. 高浓度砷渣土稳定化/固化效果及其影响因素研究[J]. 节能与环保, 2018(12): 74-75. doi: 10.3969/j.issn.1009-539X.2018.12.025

    XIAO Jinguang, LIU Xi, XIAO Wu, et al. Study on stabilization/solidification effect of high concentration arsenic residue and its influencing factors[J]. Energy Conservation & Environmental Protection, 2018(12): 74-75. (in Chinese) doi: 10.3969/j.issn.1009-539X.2018.12.025

    [13]

    MOON D H, WAZNE M, YOON I H, et al. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils[J]. Journal of Hazardous Materials, 2008, 159(2/3): 512-518.

    [14]

    ZHANG M Y, WANG Y, ZHAO D Y, et al. Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles[J]. Chinese Science Bulletin, 2010, 55(4): 365-372.

    [15]

    LI L, WANG X, ZHOU Y Y, et al. Effectiveness and limitation of A-nZVI for restoration of a highly As-contaminated soil[J]. Journal of Cleaner Production, 2021, 284: 124691. doi: 10.1016/j.jclepro.2020.124691

    [16] 彭风成, 林书平, 张风雷, 等. 铁系/石灰-水泥对砷污染土壤稳定化研究[J]. 环境科学与技术, 2020, 43(增刊1): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S1021.htm

    PENG Fengcheng, LIN Shuping, ZHANG Fenglei, et al. Study on stabilization of arsenic contaminated soil by iron system/lime-cement[J]. Environmental Science & Technology, 2020, 43(S1): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S1021.htm

    [17]

    WANG S F, HE X Y, PAN R R, et al. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions[J]. Environmental Science and Pollution Research, 2016, 23(8): 7267-7277. doi: 10.1007/s11356-015-5927-z

    [18]

    ZHANG W J, JIANG M H. Efficient remediation of heavily As(Ⅲ)-contaminated soil using a pre-oxidation and stabilization/solidification technique[J]. Chemosphere, 2022, 306: 135598. doi: 10.1016/j.chemosphere.2022.135598

    [19]

    ZHA F S, LIU J J, CUI K R, et al. Utilization of cement for solidification/stabilization (s/s) of heavy metal contaminated soils[J]. Disaster Advances, 2012, 5(4): 1574-1577.

    [20]

    DAVRANCHE M, BOLLINGER J C. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: effect of reductive conditions[J]. Journal of Colloid and Interface Science, 2000, 227(2): 531-539. doi: 10.1006/jcis.2000.6904

    [21]

    HUSSON O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy[J]. Plant and Soil, 2013, 362(1): 389-417.

    [22]

    VAN DER SLOOT H A, VAN ZOMEREN A, MEEUSSEN J C L, et al. Test method selection, validation against field data, and predictive modelling for impact evaluation of stabilised waste disposal[J]. Journal of Hazardous Materials, 2007, 141(2): 354-369. doi: 10.1016/j.jhazmat.2006.05.106

    [23]

    HAN Y S, PARK J H, AHN J S. Aging effects on fractionation and speciation of redox-sensitive metals in artificially contaminated soil[J]. Chemosphere, 2021, 263: 127931. doi: 10.1016/j.chemosphere.2020.127931

    [24]

    HINDERSMANN I, MANSFELDT T. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions[J]. Water, Air, & Soil Pollution, 2014, 225(10): 2158.

    [25]

    FUHRMANN M, HEISER J H, PIETRZAK R F, et al. Method for Accelerated Leaching of Solidified Waste[R]. NewYork: Brookhaven National Lab, 1990.

    [26]

    MOON D H, DERMATAS D. Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions[J]. Journal of Hazardous Materials, 2007, 141(2): 388-394. doi: 10.1016/j.jhazmat.2006.05.085

    [27]

    SAMPLE-LORD K M, ZHANG W J, TONG S, et al. Apparent salt diffusion coefficients for soil-bentonite backfills[J]. Canadian Geotechnical Journal, 2020, 57(5): 623-634. doi: 10.1139/cgj-2019-0058

    [28]

    SONG F Y, GU L, ZHU N W, et al. Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders[J]. Chemosphere, 2013, 92(4): 344-350. doi: 10.1016/j.chemosphere.2013.01.022ww.cnki.com.cn/Article/CJFDTOTAL-XDSD201704013.htmcle/CJFDTOTAL-TYGC202102006.htm

    [29]

    KUNDU S, GUPTA A K. Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic[J]. Journal of Hazardous Materials, 2008, 153(1/2): 434-443.

    [30]

    DERMATAS D, MOON D H, MENOUNOU N, et al. An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test[J]. Journal of Hazardous Materials, 2004, 116(1/2): 25-38.

    [31]

    GODBEE H W, JOY D S. Assessment of the Loss of Radioactive Isotopes from Waste Solids to the Environment. Part Ⅰ. Background and theory[R]. Tennessee: Oak Ridge National Lab, 1974.

    [32]

    DUTRÉ V, VANDECASTEELE C. Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate[J]. Waste Management, 1995, 15(1): 55-62. doi: 10.1016/0956-053X(95)00002-H

    [33]

    MASSCHELEYN P H, DELAUNE R D, PATRICK W H Jr. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil[J]. Environmental Science & Technology, 1991, 25(8): 1414-1419.

    [34]

    SOUHAIL R A, JEGADEESAN G, PURANDARE J, et al. Arsenic release from iron rich mineral processing waste: influence of pH and redox potential[J]. Chemosphere, 2007, 66(4): 775-782. doi: 10.1016/j.chemosphere.2006.07.045

    [35]

    ZHANG W J, LIN M F. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil[J]. Science of the Total Environment, 2020, 733: 139410. doi: 10.1016/j.scitotenv.2020.139410

    [36]

    DU Y J, JIANG N J, SHEN S L, et al. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay[J]. Journal of Hazardous Materials, 2012, 225/226: 195-201. doi: 10.1016/j.jhazmat.2012.04.072

    [37] 李江山, 王平, 张亭亭, 等. 酸溶液淋溶作用下重金属污染土固化体浸出特性及机理[J]. 岩土工程学报, 2017, 39(增刊1): 135-139. doi: 10.11779/CJGE2017S1027

    LI Jiangshan, WANG Ping, ZHANG Tingting, et al. Leaching characteristics and mechanism of heavy metal in solidified/stabilized contaminated soil under acid solution soaking[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 135-139. (in Chinese) doi: 10.11779/CJGE2017S1027

    [38]

    CINQUEPALMI M A, MANGIALARDI T, PANEI L, et al. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics[J]. Journal of Hazardous Materials, 2008, 151(2/3): 585-593.

    [39]

    MALVIYA R, CHAUDHARY R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products[J]. Journal of Hazardous Materials, 2006, 137(1): 207-217. doi: 10.1016/j.jhazmat.2006.01.056

    [40]

    DU Y J, WEI M L, REDDY K R, et al. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil[J]. Journal of Hazardous Materials, 2014, 271: 131-140. doi: 10.1016/j.jhazmat.2014.02.002

    [41]

    TOMMASEO C E, KERSTEN M. Aqueous solubility diagrams for cementitious waste stabilization systems. 3. mechanism of zinc immobilizaton by calcium silicate hydrate[J]. Environmental Science & Technology, 2002, 36(13): 2919-2925.

    [42]

    CUI J L, ZHAO Y P, LI J S, et al. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong[J]. Environmental Pollution, 2018, 232: 375-384. doi: 10.1016/j.envpol.2017.09.040

    [43] 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201810003.htm

    MAO Lingchen, YE Hua. Influence of redox potential on heavy metal behavior in soils: a review[J]. Research of Environmental Sciences, 2018, 31(10): 1669-1676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201810003.htm

    [44]

    KIM E J, LEE J C, BAEK K. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents[J]. Journal of Hazardous Materials, 2015, 283: 454-461. doi: 10.1016/j.jhazmat.2014.09.055

    [45]

    LI J S, WANG L, CUI J L, et al. Effects of low-alkalinity binders on stabilization/solidification of geogenic As- containing soils: Spectroscopic investigation and leaching tests[J]. Science of the Total Environment, 2018, 631/632: 1486-1494. doi: 10.1016/j.scitotenv.2018.02.247

图(5)  /  表(2)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  61
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-12
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回