• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地下管廊基坑开挖对CFG桩受力变形特性的影响研究

刘涛, 胡柏春, 杨迅

刘涛, 胡柏春, 杨迅. 地下管廊基坑开挖对CFG桩受力变形特性的影响研究[J]. 岩土工程学报, 2022, 44(S1): 226-230. DOI: 10.11779/CJGE2022S1040
引用本文: 刘涛, 胡柏春, 杨迅. 地下管廊基坑开挖对CFG桩受力变形特性的影响研究[J]. 岩土工程学报, 2022, 44(S1): 226-230. DOI: 10.11779/CJGE2022S1040
LIU Tao, HU Bo-chun, YANG Xun. Influences of excavation of foundation pit of underground pipe gallery on mechanical deformation characteristics of CFG piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 226-230. DOI: 10.11779/CJGE2022S1040
Citation: LIU Tao, HU Bo-chun, YANG Xun. Influences of excavation of foundation pit of underground pipe gallery on mechanical deformation characteristics of CFG piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 226-230. DOI: 10.11779/CJGE2022S1040

地下管廊基坑开挖对CFG桩受力变形特性的影响研究  English Version

基金项目: 

贵州省科技支撑项目 黔科合支撑[2019]2853号

详细信息
    作者简介:

    刘涛(1988—),男,硕士研究生,主要从事地下综合管廊方向研究及相关工程设计研究工作。E-mail: 1500492441@qq.com

  • 中图分类号: TU431

Influences of excavation of foundation pit of underground pipe gallery on mechanical deformation characteristics of CFG piles

  • 摘要: 在先施工工程桩再进行开挖的基坑工程中,坑底土体在基坑开挖卸荷的过程中产生的回弹变形会导致基坑底部土体产生相对于桩体向上的位移,此时桩体可能因较大的拉力断裂,从而大大减弱地基承载力。以贵州某地下综合管廊项目为依托,利用有限元计算软件MIDAS GTS NX模拟了基坑开挖的施工过程,研究了桩长和桩体弹模对CFG桩受力及变形的影响规律。结果表明:桩长对CFG桩受力及变形有着较为明显的影响,而桩长超过一定范围后影响显著降低;增加桩体弹模会让桩体承受更大的拉应力,但是能使桩体处于更加安全的状态。
    Abstract: In the foundation pit in which the engineering piles are constructed first and then excavated, the rebound deformation of the soil at the bottom of the pit in the process of excavation and unloading will lead to the upward displacement of the soil at the bottom of the pit relative to the piles. At this time, the piles may be broken due to large tensile force, which will greatly reduce the bearing capacity of the foundation. Based on an underground comprehensive pipe gallery project in Guizhou, the construction process of excavation of foundation pit is simulated by using the finite element software MIDAS GTS NX, and the influence laws of length and elastic modulus of the piles on the stress and deformation of the CFG piles are studied. The results show that the length of the piles has obvious influences on the stress and deformation of the CFG piles, and the influences decrease significantly when the pile length exceeds a certain range. Increasing their elastic modulus will make the piles bear greater tensile stress, but it can make them be in a safer state.
  • 图  1   地下综合管廊施工图

    Figure  1.   Construction of underground pipe gallery

    图  2   基坑三维模型图

    Figure  2.   3D model for foundation pit

    图  3   基坑计算模型横截面简图

    Figure  3.   Cross section of model for foundation pit

    图  4   基坑底部(土体)回弹量变化曲线

    Figure  4.   Variation curves of rebound amount at bottom of foundation pit (soil)

    图  5   桩顶竖向位移变化曲线

    Figure  5.   Curves of vertical displacement of pile top

    图  6   桩体拉应力分布

    Figure  6.   Distribution of tensile stress of piles

    图  7   基坑横截面最大拉应力变化曲线

    Figure  7.   Variation curves of maximum tensile stress of cross section of foundation pit

    图  8   基坑底部(土体)回弹量变化曲线

    Figure  8.   Variation curve of rebound amount at the bottom of foundation pit (soil)

    图  9   桩顶竖向位移变化曲线

    Figure  9.   Curves of vertical displacement of pile top

    图  10   基坑横截面最大拉应力变化曲线

    Figure  10.   Variation curves of maximum tensile stress of cross section of foundation pit

    图  11   拉应力与抗拉强度对比图

    Figure  11.   Comparison between tensile stress and strength

    表  1   土层参数取值表

    Table  1   Values of parameters of soil layers

    土层 重度/(kN·m-3) E50ref/MPa Eoedref/MPa Eurref/MPa 泊松比ν 黏聚力c/kPa 摩擦角φ/(°)
    杂填土 19.0 30 30 90 0.32 5 28
    黏土(可塑) 18.0 43 43 129 0.34 25 18
    黏土(软塑) 17.3 22 22 66 0.34 20 15
    强风化泥岩 24.0 120 120 360 0.37 30 20
    注:表中E50ref为三轴实验割线刚度;Eoedref为主压密加载试验的切线刚度;Eurref为卸载弹性模量。
    下载: 导出CSV

    表  2   计算步骤设置一览表

    Table  2   List of calculation steps

    施工阶段 施工阶段描述
    第1步 初始地应力平衡
    第2步 施工基坑围护结构与CFG桩
    第3步 施工冠梁
    第4步 施工内支撑(位移清零)
    第5~10步 开挖至-6 m(每步开挖1 m)
    下载: 导出CSV
  • [1] 郭德强. 软土地区基坑回弹机理及工程桩受力变形研究[D]. 天津: 天津大学, 2017.

    GUO De-qiang. The study of pit resilience mechanism and behavior of pile in soft region[D]. Tianjin: Tianjin University, 2017. (in Chinese)

    [2]

    IWASAKI Y, WATANABE H, FUKUDA M, et al. Construction control for underpinning piles and their behaviour[J]. Géotechnique, 1994, 44(4): 681–689. doi: 10.1680/geot.1994.44.4.681

    [3] 朱火根, 孙加平. 上海地区深基坑开挖坑底土体回弹对工程桩的影响[J]. 岩土工程界, 2005(3): 43–46. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS20050300I.htm

    ZHU Huo-gen, SUN Jia-ping. Influence of soil rebound at the bottom of deep foundation pit in Shanghai area on engineering piles[J]. Geological Exploration for Non-Ferrous Metals, 2005(3): 43–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS20050300I.htm

    [4] 郑刚, 刁钰, 吴宏伟. 超深开挖对单桩的竖向荷载传递及沉降的影响机理有限元分析[J]. 岩土工程学报, 2009, 31(6): 837–845. doi: 10.3321/j.issn:1000-4548.2009.06.004

    ZHENG Gang, DIAO Yu, ZHENG Gang, DIAO Yu, NG C W W. Finite element analysis on mechanism of effect of extra-deep excavation on vertical load transfer and settlement of a single pile[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 837–845. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.004

    [5] 胡琦, 凌道盛, 陈云敏, 等. 深基坑开挖对坑内基桩受力特性的影响分析[J]. 岩土力学, 2008, 29(7): 1965–1970. doi: 10.3969/j.issn.1000-7598.2008.07.043

    HU Qi, LING Dao-sheng, CHEN Yun-min, et al. Study of loading characters of pile foundation due to unloading of deep foundation pit excavation[J]. Rock and Soil Mechanics, 2008, 29(7): 1965–1970. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.07.043

    [6] 张翔, 刘松玉, 吴恺, 等. 工程桩对基坑回弹变形影响的数值模拟分析[J]. 岩土工程学报, 2021, 43(增刊2): 11–14. doi: 10.11779/CJGE2021S2003

    ZHANG Xiang, LIU Song-yu, WU Kai, et al. Numerical analysis of influences of engineering piles on rebound deformation of foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 11–14. (in Chinese) doi: 10.11779/CJGE2021S2003

    [7] 罗耀武. 大面积深开挖对抗拔桩承载性状的影响研究[D]. 杭州: 浙江大学, 2010.

    LUO Yao-wu. The influence of large and deep excavation on the bearing behavior of uplift piles[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)

    [8] 郑刚, 张立明, 刁钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. 岩土力学, 2011, 32(10): 3089–3096. doi: 10.3969/j.issn.1000-7598.2011.10.034

    ZHENG Gang, ZHANG Li-ming, DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. Rock and Soil Mechanics, 2011, 32(10): 3089–3096. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.10.034

    [9] 杜一鸣, 郑刚, 张立明. 考虑深基坑开挖效应的超长灌注桩桩身压缩综合系数的理论分析[J]. 岩土力学, 2014, 35(7): 2019–2028. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407036.htm

    DU Yi-ming, ZHENG Gang, ZHANG Li-ming. Theoretical analysis of comprehensive coefficient of pile compression for super-long bored pile considering effect of deep excavation[J]. Rock and Soil Mechanics, 2014, 35(7): 2019–2028. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407036.htm

    [10] 苟尧泊, 俞峰, 杨予. 基坑开挖引起既有桩基侧摩阻力中性点位置分析[J]. 岩土力学, 2015, 36(9): 2681–2687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509032.htm

    GOU Yao-bo, YU Feng, YANG Yu. Locating neutral point of excavation-induced skin friction on existing piles[J]. Rock and Soil Mechanics, 2015, 36(9): 2681–2687. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509032.htm

  • 期刊类型引用(5)

    1. 田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 . 百度学术
    2. 张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 . 本站查看
    3. 张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 . 本站查看
    4. 徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 . 百度学术
    5. 黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 . 本站查看

    其他类型引用(2)

图(11)  /  表(2)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  35
  • PDF下载量:  30
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-09-24
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回