• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

半嵌泥岩半覆黄土隧道模型试验及承载特性评价

李荣锦, 邹鑫, 李荣建, 林国强, 白维仕, 张瑾

李荣锦, 邹鑫, 李荣建, 林国强, 白维仕, 张瑾. 半嵌泥岩半覆黄土隧道模型试验及承载特性评价[J]. 岩土工程学报, 2022, 44(S1): 98-103. DOI: 10.11779/CJGE2022S1018
引用本文: 李荣锦, 邹鑫, 李荣建, 林国强, 白维仕, 张瑾. 半嵌泥岩半覆黄土隧道模型试验及承载特性评价[J]. 岩土工程学报, 2022, 44(S1): 98-103. DOI: 10.11779/CJGE2022S1018
LI Rong-jin, ZOU Xin, LI Rong-jian, LIN Guo-qiang, BAI Wei-shi, ZHANG Jin. Model tests and bearing characteristics of tunnels under semi-inlaid mudstone and semi-loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 98-103. DOI: 10.11779/CJGE2022S1018
Citation: LI Rong-jin, ZOU Xin, LI Rong-jian, LIN Guo-qiang, BAI Wei-shi, ZHANG Jin. Model tests and bearing characteristics of tunnels under semi-inlaid mudstone and semi-loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 98-103. DOI: 10.11779/CJGE2022S1018

半嵌泥岩半覆黄土隧道模型试验及承载特性评价  English Version

基金项目: 

陕西省重点研发计划项目 2020ZDLGY07-03

中国中铁六院西安勘察设计研究院责任有限公司重点课题 XKY-2022-03

详细信息
    作者简介:

    李荣锦(1972—),女,博士,副教授,研究方向为土木工程建造与管理、风险评价与预警等。E-mail:lirongjin12@126.com

  • 中图分类号: TU432;U451

Model tests and bearing characteristics of tunnels under semi-inlaid mudstone and semi-loess

  • 摘要: 隧道进出口通常会出现在傍山边坡,亦不可避免地存在半嵌软岩半覆土体的隧道围岩地质条件,针对傍山隧道极易遭受滑坡灾害的威胁问题,开展半嵌泥岩半覆黄土傍山隧道衬砌的承载特性研究具有重要的理论与工程意义。基于可实现边坡侧向非均匀加载的模型试验装置,开展了近邻滑坡的、半嵌泥岩半覆黄土隧道模型试验,评价了半嵌泥岩半覆黄土傍山隧道衬砌的承载特性。研究表明,模型试验有效揭示了傍山隧道衬砌弯矩分布的偏压特性,潜在滑动面贯穿使得傍山隧道衬砌受力愈加恶化,使得隧道衬砌弯矩峰值增大了43.23%,同时隧道衬砌位置产生了更大的偏移。
    Abstract: The entrance and exit of a tunnel usually appear in the side slope of a mountain, so the tunnel has a kind of the inevitable existence embedded in soft rock and overlying soil. In view of this, the tunnel may be vulnerable to the threat of landslide disasters. It is of great theoretical and engineering significance to study the bearing characteristics of tunnel linings under semi-mudstone and semi-loess. Based on the model test device which has realized the non-uniform lateral loading on the slope, the model tests are carried out under semi-mudstone and semi-loess, and the corresponding bearing characteristics of tunnel linings are evaluated under the neighboring landslide. The results show that the partial pressure characteristics of bending moment of the tunnel linings are effectively revealed. The movement of potential sliding surface reduces the mechanical characteristics of the tunnel linings, which increases the peak bending moment of the tunnel linings by 43.23% and causes a certain displacement at the position of the tunnel linings.
  • 图  1   侧向非均匀加载示意图

    Figure  1.   Schematic diagram of lateral non-uniform loading

    图  2   半嵌泥岩半覆黄土隧道模型试验工况

    Figure  2.   Model test conditions of tunnel under semi-inlaid mudstone and semi-loess

    图  3   测试元件布置图

    Figure  3.   Layout of test sensors

    图  4   左侧压板顶水平加载10 cm水平位移时模型变化

    Figure  4.   Change process of slope model with horizontal displacement of 10 cm loaded at top of left-hand platen

    图  5   模型坡面位移的监测曲线

    Figure  5.   Monitoring curves of displacement of model slope surface

    图  6   坡面附近土压力监测曲线

    Figure  6.   Monitoring curves of earth pressure near slope surface

    图  7   模型隧道衬砌应力峰值

    Figure  7.   Peak stresses of model tunnel linings

    图  8   隧道模型衬砌弯矩变化

    Figure  8.   Variation of bending moment of tunnel model linings

    图  9   数值模拟中非均匀荷载的加载方式

    Figure  9.   Loading modes of non-uniform loads in numerical simulation

    图  10   隧道衬砌模型的计算应力云图

    Figure  10.   Nephogram of simulated stress of tunnel lining model in numerical simulation

    图  11   隧道衬砌模型的计算弯矩图

    Figure  11.   Simulated bending moments of tunnel lining model

    图  12   数值模拟与模型试验的弯矩峰值对比

    Figure  12.   Comparison of peak bending moments between numerical simulations and model tests

    表  1   黄土及重塑泥岩物理力学参数

    Table  1   Physical and mechanical parameters of loess and remolded mudstone

    基本参数 黄土 重塑泥岩
    密度/(g·cm-3) 1.38 1.60
    含水率/% 10.5 14.0
    干密度/(g·cm-3) 1.25 1.40
    Gs 2.72 2.78
    黏聚力/kPa 30.0 45.0
    内摩擦角/(°) 18.1 21.0
    下载: 导出CSV

    表  2   隧道衬砌位置应变峰值

    Table  2   Peak strains at each monitoring positions of tunnel linings

    采集点 右侧拱肩A3 右侧拱脚A7 左侧拱脚A11 左侧拱肩
    A15
    工况一 0.004081 0.003886 0.004205 0.004127
    工况二 0.004229 0.00566 0.004714 0.004761
    下载: 导出CSV

    表  3   数值模型材料参数

    Table  3   Material parameters in numerical model

    均质材料 密度
    /(g·cm-3)
    黏聚力/kPa 摩擦角/(°) 弹性模量/MPa 泊松比
    黄土 1.38 30 18.1 15 0.38
    重塑泥岩 1.60 45 21.0 20 0.30
    隧道模型 1.20 3000 0.37
    下载: 导出CSV
  • [1] 张治国, 毛敏东, PAN Y T, 等. 隧道-滑坡相互作用影响及控制防护技术研究现状与展望[J]. 岩土力学, 2021, 42(11): 3101–3125. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111020.htm

    ZHANG Zhi-guo, MAO Min-dong, PAN Y T, et al. Research status and prospect of tunnel-landslide interaction and control protection technology[J]. Rock and Soil Mechanics, 2021, 42(11): 3101–3125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111020.htm

    [2] 梁发云, 方衍其, 袁强, 等. 软、硬地层中局部堆载对隧道横向变形影响的试验研究[J]. 同济大学学报(自然科学版), 2021, 49(3): 322–331, 430. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103004.htm

    LIANG Fa-yun, FANG Yan-qi, YUAN Qiang, et al. Experimental study of the influence of surface surcharge on tunnel lateral deformation in soft and hard soil[J]. Journal of Tongji University(Natural Science), 2021, 49(3): 322–331, 430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103004.htm

    [3] 崔光耀, 宋博涵, 王道远, 等. 隧道软硬围岩交界段纤维混凝土衬砌抗震性能模型试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2653–2661. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1007.htm

    CUI Guang-yao, SONG Bo- han, WANG Dao-yuan, et al. Model test study on seismic performance of fiber reinforced concrete lining applied at the interface section of soft and hard surrounding rock of tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2653–2661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1007.htm

    [4] 周光新, 盛谦, 崔臻, 等. 走滑断层错动影响下跨活断层铰接隧洞破坏机制模型试验[J]. 岩土力学, 2022, 43(1): 37–50. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202201004.htm

    ZHOU Guang-xin, SHENG Qian, CUI Zhen, et al. Model test of failure mechanism of tunnel with flexible joint crossing active fault under strike-slip fault dislocation[J]. Rock and Soil Mechanics, 2022, 43(1): 37–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202201004.htm

    [5] 徐海岩, 王志杰, 陈昌健, 等. 土砂互层隧道塌方及演变规律的模型试验研究[J]. 岩土工程学报, 2021, 43(6): 1050–1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106012.htm

    XU Hai-yan, WANG Zhi-jie, CHEN Chang-jian, et al. Model tests on characteristics and evolution of tunnel collapse in soil-sand interbedded strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1050–1058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106012.htm

    [6] 袁冉, 熊维林, 何毅, 等. 复合成层地层浅埋隧道开挖地表沉降规律分析[J/OL]. 西南交通大学学报, 2022, 57(5): 1063–1069.

    YUAN Ran, XIONG Weilin, HE Yi, et al. Analysis on the law of ground settlement in shallow tunnel excavation in composite layered strata[J/OL]. Journal of Southwest Jiaotong University, 2022, 57(5): 1063–1069. (in Chinese)

    [7] 陈春玲, 许培. 基于数值模拟的顶部岩溶隧道围岩稳定性分析[J]. 土工基础, 2021, 35(6): 723–727, 736. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202106017.htm

    CHEN Chun-ling, XU Pei. Numerical stability analysis of rock mass at the crest of a tunnel[J]. Soil Engineering and Foundation, 2021, 35(6): 723–727, 736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202106017.htm

    [8] 李瀚源, 李兴高, 马明哲, 等. 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 631–639. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202204001.htm

    LI Han-yuan, LI Xing-gao, MA Ming-zhe, et al. Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(4): 631–639. . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202204001.htm

    [9] 颉永斌, 董建华. 断层破碎带内隧道纵向受荷特征和变形分析[J]. 中国公路学报, 2021, 34(11): 211–224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202111017.htm

    XIE Yong-bin, DONG Jian-hua. Analysis of longitudinal deformation and stress characteristics of tunnel crossing fault fracture zone[J]. China Journal of Highway and Transport, 2021, 34(11): 211–224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202111017.htm

    [10] 王鸿儒, 钟紫蓝, 赵密, 等. 走滑断层黏滑错动下隧道破坏的模型试验研究[J]. 北京工业大学学报, 2021, 47(7): 691–701. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107004.htm

    WANG Hong-ru, ZHONG Zi-lan, ZHAO Mi, et al. Model experimental study of the influence of strike-slip fault dislocation on tunnel[J]. Journal of Beijing University of Technology, 2021, 47(7): 691–701. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107004.htm

    [11] 刘学增, 段俊铭, 郭乔堃. 侧向荷载作用下公路隧道衬砌损伤演化分析[J]. 地下空间与工程学报, 2021, 17(5): 1529–1536, 1605. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202105022.htm

    LIU Xue-zeng, DUAN Jun-ming, GUO Qiao-kun. Analysis on damage evolution of highway tunnel lining under lateral load[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(5): 1529–1536, 1605. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202105022.htm

    [12] 成永刚, 王全才, 范安军. 隧道区滑坡防治方案研究[J]. 地质灾害与环境保护, 2014, 25(4): 30–36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201404005.htm

    CHENG Yong-gang, WANG Quan-cai, FAN An-jun. Scheme for landslide prevention in tunnel areas[J]. Journal of Geological Hazards and Environment Preservation, 2014, 25(4): 30–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201404005.htm

图(12)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回