Spatial variability characterization of soil properties in offshore wind farms based on Bayesian theory and conditional co-simulation method
-
摘要: 海上风电场土体参数的空间变异性表征对海上风电工程具有重要意义,多源土体参数融合可降低表征结果的不确定性。然而,现有方法无法利用非同位多源土体参数数据,且不考虑统计不确定性对空间变异性表征的影响。为此,提出了基于贝叶斯理论的条件协同模拟方法,该方法根据非同位多源土体参数数据,利用贝叶斯理论估计交叉变异函数,再利用条件协同模拟方法生成大量土体参数空间分布的模拟样本,表征参数空间变异性,表征过程中合理地考虑模型参数的统计不确定性。以某海上风电场为工程背景,利用提出的方法融合无侧限抗压强度(qu)和标准贯入试验(SPT)击数N值,表征qu的空间变异性。结果表明:提出的方法可以根据有限非同位的qu和N值数据,表征qu的空间变异性,合理地反映了有限数据条件下统计不确定性的影响。此外,利用强信息先验分布或者融合标准贯入数据,可以降低变异函数模型参数统计不确定性和条件协同模拟结果的不确定性。Abstract: The spatial variability characterization of soil properties in offshore wind farms is essential for offshore engineering. The multi-source data fusion can reduce the uncertainty of characterization. However, the existing methods cannot simulate geotechnical properties based on the non-co-located multi-source data, and do not consider the effects of statistical uncertainty. To overcome these challenges, a conditional co-simulation method based on the Bayesian theory is proposed. The Bayesian theory is first used to estimate the cross-variogram model based on the non-co-located multi-source data. Then, the conditional co-simulation is used to generate realizations of spatially varied soil properties, which can characterize the spatial variability with consideration of statistical uncertainty. The proposed method is applied to an offshore wind farm to establish the spatial variability model for the unconfined compression strength (qu) by integrating data on qu and standard penetration test (SPT) N value. The results show that the proposed method can characterize the spatial variability of qu from the non-co-located data on the values of qu and N, and statistical uncertainty is properly taken into account. In addition, the uncertainties of the variogram models and the conditional co-simulation results can be reduced when the prior distribution with more information and/or SPT data is used.
-
-
表 1 常用的变异函数与协方差函数模型
Table 1 Commonly used variogram and covariance models
类型 变异函数 协方差函数 指数模型 高斯模型 球状模型 表 2 先验分布Ⅰ
Table 2 Prior distribution Ⅰ of parameters
参数 β1/kPa c1/kPa r/km β2/击 c2/击 c12 下限 0 0 0.1 0 0 0 上限 200 1000 2 50 100 200 表 3 先验分布Ⅱ
Table 3 Prior distribution Ⅱ of parameters
参数 β1/kPa c1/kPa r/km β2/击 c2/击 c12 下限 0 100 0.5 0 0 10 上限 200 600 2 50 40 100 -
[1] 任灏, 刘博, 刘晓建, 等. 阳江沙扒海上风电三桶吸力桩基础局部冲刷试验研究[J]. 人民珠江, 2022, 43(5): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ202205016.htm REN Hao, LIU Bo, LIU Xiaojian, et al. Study on local scour of suction bucket foundations at offshore wind farms in shapa of Yangjiang[J]. Pearl River, 2022, 43(5): 107-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ202205016.htm
[2] 刘润, 闫澍旺. 渤海湾地基土随机场特性及可靠度分析[J]. 岩土工程学报, 2004, 26(4): 464-467. http://cge.nhri.cn/cn/article/id/11445 LIU Run, YAN Shuwang. Random field model and reliability analysis of foundation soil in Bohai Gulf[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 464-467. (in Chinese) http://cge.nhri.cn/cn/article/id/11445
[3] 张强林, 吴衍剑, 张祥龙. 海上风电超大直径单桩基础水平位移计算影响因素研究[J]. 水电与新能源, 2021, 35(12): 54-56, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD202112014.htm ZHANG Qianglin, WU Yanjian, ZHANG Xianglong. On the influencing factors of horizontal displacement calculation of super-large diameter mono-pile foundation for offshore wind turbine[J]. Hydropower and Nwe Energy, 2021, 35(12): 54-56, 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD202112014.htm
[4] 沈晓雷, 陈洪飞, 王欣怡. 海上风电高桩承台基础承载特性数值模拟研究[J]. 水力发电, 2021, 47(12): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD202112016.htm SHEN Xiaolei, CHEN Hongfei, WANG Xinyi. Numerical simulation on the bearing characteristics of the high-pile cap foundation for offshore wind power[J]. Water Power, 2021, 47(12): 72-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD202112016.htm
[5] VANMARCKE E. Random Fields, Analysis and Synthesis[M]. Cambridge: MIT Press, 1983.
[6] JOURNEL A G. Geostatistics for conditional simulation of ore bodies[J]. Economic Geology, 1974, 69(5): 673-687. doi: 10.2113/gsecongeo.69.5.673
[7] CHEN Q S, WANG C F, JUANG C H. Probabilistic and spatial assessment of liquefaction-induced settlements through multiscale random field models[J]. Engineering Geology, 2016, 211: 135-149. doi: 10.1016/j.enggeo.2016.07.002
[8] LI X Y, ZHANG L M, LI J H. Using conditioned random field to characterize the variability of geologic profiles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 04015096. doi: 10.1061/(ASCE)GT.1943-5606.0001428
[9] 朱彬. 基于可靠度理论的海床稳定性分析及评价方法[D]. 大连: 连理工大学, 2021. ZHU Bin. Analysis and Evaluation Method of Seabed Stability Based on Reliability Theory[D]. Dalian: Dalian University of Technology, 2021. (in Chinese)
[10] LUO N, ARWADE S R, DEGROOT D J. Probabilistic analysis of offshore geotechnical site investigation in a homogeneous stiff clay deposit[J]. Journal of Physics Conference Series, 2020, 1452: 012037. doi: 10.1088/1742-6596/1452/1/012037
[11] 林军, 蔡国军, 邹海峰, 等. 基于随机场理论的江苏海相黏土空间变异性评价研究[J]. 岩土工程学报, 2015, 37(7): 1278-1287. doi: 10.11779/CJGE201507014 LIN Jun, CAI Guojun, ZOU Haifeng, et al. Assessment of spatial variability of Jiangsu marine clay based on random field theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1278-1287. (in Chinese) doi: 10.11779/CJGE201507014
[12] 蒋水华, 魏博文, 张文举, 等. 基于多源试验数据空间变异土体参数概率反演及边坡可靠度更新[J]. 岩土力学, 2018, 39(4): 1491-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804042.htm JIANG Shuihua, WEI Bowen, ZHANG Wenju, et al. Probabilistic back analysis of spatially varying soil properties and reliability updating of slopes with multiple sources of test data[J]. Rock and Soil Mechanics, 2018, 39(4): 1491-1499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804042.htm
[13] MIAO C, CAO Z J, XIAO T, et al. BayLUP: A Bayesian framework for conditional random field simulation of the liquefaction-induced settlement considering statistical uncertainty and model error[J/OL]. Gondwana Research, 2022. https://doi.org/10.1016/j.gr.2022.10.020.
[14] 夏侯云山, 张抒, 唐辉明, 等. 考虑参数空间变异结构的结构化交叉约束随机场模拟方法研究[J]. 岩土力学, 2019, 40(12): 4935-4945, 4962. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912044.htm XIAHOU Yunshan, ZHANG Shu, TANG Huiming, et al. Study of structural cross-constraint random field simulation method considering spatial variation structure of parameters[J]. Rock and Soil Mechanics, 2019, 40(12): 4935-4945, 4962. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912044.htm
[15] REMY N, BOUCHER A, WU J. Applied Geostatistics with SGeMS: A User's Guide[M]. New York: Cambridge University Press, 2009.
[16] XU J B, ZHANG L L, WANG Y, et al. Probabilistic estimation of cross-variogram based on Bayesian inference[J]. Engineering Geology, 2020, 277: 105813. doi: 10.1016/j.enggeo.2020.105813
[17] 杜文凤, 彭苏萍. 利用地质统计学预测煤层厚度[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2762-2767. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1028.htm DU Wenfeng, PENG Suping. Coalseam thickness prediction with geostatistics[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2762-2767. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1028.htm
[18] 张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005. ZHANG Renduo. Spatial Variation Theory and Its Application[M]. Beijing: Science Press, 2005. (in Chinese)
[19] WEBSTER R, OLIVER M A. Geostatistics for Environmental Scientists[M]. 2nd ed. Chichester: Wiley, 2007.
[20] 张蕾, 李典庆, 唐小松, 等. 基于贝叶斯理论的抗剪强度参数最优Copula函数识别[J]. 岩土力学, 2016, 37(增刊2): 578-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2073.htm ZHANG Lei, LI Dianqing, TANG Xiaosong, et al. Bayesian Copula selection for shear strength parameters of soils and rocks[J]. Rock and Soil Mechanics, 2016, 37(S2): 578-588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2073.htm
[21] 蒋水华, 冯泽文, 刘贤, 等. 基于自适应贝叶斯更新方法的岩土参数概率分布推断[J]. 岩土力学, 2020, 41(1): 325-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm JIANG Shuihua, FENG Zewen, LIU Xian, et al. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach[J]. Rock and Soil Mechanics, 2020, 41(1): 325-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm
[22] JOURNEL A G. Geostatistics: models and tools for the earth sciences[J]. Mathematical Geology, 1986, 18(1): 119-140. doi: 10.1007/BF00897658
[23] 田密, 李典庆, 曹子君, 等. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 2017, 38(11): 3355-3362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm TIAN Mi, LI Dianqing, CAO Zijun, et al. Quantification of spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 2017, 38(11): 3355-3362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm
[24] CAO Z J, WANG Y, LI D Q. Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203, 107-116. doi: 10.1016/j.enggeo.2015.08.018
[25] VRUGT J A, TER BRAAK C J F, CLARK M P, et al. Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation[J]. Water Resources Research, 2008, 44(12): W00B09.
[26] 左自波, 张璐璐, 程演, 等. 基于MCMC法的非饱和土渗流参数随机反分析[J]. 岩土力学, 2013, 34(8): 2393-2400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308057.htm ZUO Zibo, ZHANG Lulu, CHENG Yan, et al. Probabilistic back analysis of unsaturated soil seepage parameters based on Markov chain Monte Carlo method[J]. Rock and Soil Mechanics, 2013, 34(8): 2393-2400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308057.htm
[27] 余志雄, 周创兵, 李俊平, 等. 基于v-SVR算法的边坡稳定性预测[J]. 岩石力学与工程学报, 2005, 24(14): 2468-2475. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200514012.htm YU Zhixiong, ZHOU Chuangbing, LI Junping, et al. Predicting slope stability based on v-SVR algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2468-2475. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200514012.htm
-
期刊类型引用(1)
1. 王德元,彭秀钟,杜宇琛,高曜翔,张友虎. 多源数据融合的海上风电场三维地质建模方法. 海洋学报. 2025(02): 85-97 . 百度学术
其他类型引用(1)