Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含有机质土-金属界面黏附特性与机制研究

朱俊宇, 裴利华, 桂跃

朱俊宇, 裴利华, 桂跃. 含有机质土-金属界面黏附特性与机制研究[J]. 岩土工程学报, 2024, 46(3): 605-615. DOI: 10.11779/CJGE20221415
引用本文: 朱俊宇, 裴利华, 桂跃. 含有机质土-金属界面黏附特性与机制研究[J]. 岩土工程学报, 2024, 46(3): 605-615. DOI: 10.11779/CJGE20221415
ZHU Junyu, PEI Lihua, GUI Yue. Characteristics and mechanism of adhesion between organic clay soil and metal surface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 605-615. DOI: 10.11779/CJGE20221415
Citation: ZHU Junyu, PEI Lihua, GUI Yue. Characteristics and mechanism of adhesion between organic clay soil and metal surface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 605-615. DOI: 10.11779/CJGE20221415

含有机质土-金属界面黏附特性与机制研究  English Version

基金项目: 

国家自然科学基金项目 52068039

中铁第四勘察设计院集团有限公司科技研发计划项目 院科2020K145

详细信息
    作者简介:

    朱俊宇(1997—),男,硕士,主要从事特殊土工程性质方面的研究工作。E-mail: gydrgui@kmust.edu.cn

    通讯作者:

    桂跃, E-mail: gydrgui@kmust.edu.cn

  • 中图分类号: TU43

Characteristics and mechanism of adhesion between organic clay soil and metal surface

  • 摘要: 土中有机质的存在对土-金属界面黏附有显著影响,但其影响规律及机制尚缺乏系统研究。通过在蒙脱石、伊利石和高岭土中添加泥炭,配置了不同矿质、有机质含量的黏性土样。利用MC-100型拉力试验机测试了不同含水率土-金属界面黏附力。试验结果表明:在塑限至液限含水率范围内,黏附力F与含水率w的关系曲线为典型的“钟型”;有机质含量wu增大会导致F-w曲线由高陡变扁平;土样峰值黏附力Fmax随有机质含量wu变化可分为3个阶段:波动或缓慢下降(上升)阶段、急剧下降阶段和趋于稳定阶段。利用傅积平法测试了3种黏土矿物对有机质的饱和吸附量,从而明确了有机质在土中赋存形态随有机质含量变化的过程。机理分析表明:除了有机质含量外,有机质在土中的赋存形态对土样宏观黏附力也有显著影响。最后对分布于昆明地铁5号线沿线的天然泥炭土-金属界面黏附力进行了测试,得出其黏附力较小、黏附风险较小的结论,盾构机穿越泥炭土层没出现严重黏附刀盘或堵塞现象验证了该结论。
    Abstract: The presence of organic matter in soil has a significant effect on the soil-metal interface adhesion, but its influencing law and mechanism have not been systematically studied. By adding peat to montmorillonite, illite and kaolin, three groups of clay samples with different mineral and organic matter contents are prepared. The adhesion between the soil-metal interfaces with different moisture contents is tested by using the MC-100 tensile testing machine. The test results show that the relation curve between the adhesion force F and water content w is a typical "bell-shape" in the range from the plastic limit to the liquid limit water content. With the increase of the organic matter content wu, the curve of F-w changes from high to flat. With the increase of the organic matter content wu, the change of peak adhesion Fmax can be divided into three stages: fluctuation or slow decline (or ascending) stage, significant decline stage, and stable stage. The saturation adsorption of the organic matter with three kinds of clay minerals is measured by the Fu's method, and the occurrence forms of the organic matter in soil change with the content of the organic matter. The mechanism analysis shows that in addition to the content of the organic matter, the form of the organic matter in soil also has a significant effect on the macroscopic adhesion of soil samples. Finally, the adhesion force of the natural peat soil-metal interface distributed along Line 5 of Kunming Metro is tested, and it is concluded that the adhesion force is small, and the risk of adhesion is also small, which is verified by the fact that the shield machine traversing through the peat layer does not show any serious adhesion to the cutter plate or clogging phenomenon.
  • 图  1   黏土矿物和泥炭

    Figure  1.   Clay minerals and peat

    图  2   MC-100型电动拉力测试仪

    Figure  2.   MC-100 electric tension tester for pull-out tests

    图  3   典型荷载-位移曲线

    Figure  3.   Load-displacement curves

    图  4   不同有机质含量的配置土

    Figure  4.   Artificial soil samples with different organic matter contents

    图  5   含有机质蒙脱石土样黏附力与含水率关系

    Figure  5.   Adhesion versus water content for montmorillonite soil samples containing organic matter

    图  6   土样黏附力与含水率关系

    Figure  6.   Adhesion versus water content for all soil samples

    图  7   含有机质土的界限含水率与有机质含量关系

    Figure  7.   Limit moisture content versus organic matter content for soil samples

    图  8   土样黏附力与稠度指数关系

    Figure  8.   Adhesion versus consistency index for all soil samples

    图  9   有机质含量与峰值黏附力关系

    Figure  9.   Peak adhesion versus organic matter content

    图  10   黏土矿物-有机质复合体[25]

    Figure  10.   Clay minerals-organic matter complex[25]

    图  11   土中有机质赋存形态的土壤学分类

    Figure  11.   Morphological classification of soil organic matter

    图  12   试验流程

    Figure  12.   Flow chart of tests

    图  13   土中不同赋存状态有机质含量与土中有机质含量关系

    Figure  13.   Relationship between contents of different forms of organic matter and total organic matter in the soil

    图  14   土中有机质赋存形态变化及土-金属界面吸附模型

    Figure  14.   Conceptual model for transformation of organic matter in soil

    图  15   峰值黏附力与土的有机质含量关系模型

    Figure  15.   Model for peak adhesion versus organic matter content

    图  16   天然泥炭土的黏附力与含水率关系

    Figure  16.   Adhesion versus water content for natural peaty soil

    图  17   天然泥炭土峰值黏附力在模型中的位置

    Figure  17.   Peak adhesion versus organic matter content for natural peaty soil

    表  1   黏土矿物和泥炭的物理性质

    Table  1   Characteristics of test clay minerals and peat

    名称 液限wL/% 塑限wp/% 黏粒含量/% SSA/(m2·g-1)
    蒙脱石 194.5 47.1 42.1 520.0
    伊利石 95.3 45.7 25.3 84.0
    高岭土 42.5 29.6 12.5 15.6
    泥炭 762.3 154.8 894.1
    注:①粒径小于0.005 mm,采用激光粒度仪测试;②比表面积,采用BET测试法。
    下载: 导出CSV

    表  2   试验方案

    Table  2   Testing programs

    类别 有机质含量wu /% 项目
    蒙脱石 0.0,3.5,6.0,7.5,10.1,12.6,15.3,17.7,29.0,40.7,51.4,77.8 界限含水率试验
    拉力试验
    伊利石 0.0,2.1,3.2,5.2,7.4,10.3,16.0,24.2,31.4,44.2,55.2,70.0
    高岭土 0.0,2.0,3.0,4.5,7.8,11.3,17.9,21.4,34.0,44.2,52.1,75.1
    下载: 导出CSV

    表  3   拐点及阈值对应有机质含量表

    Table  3   Statistical table of inflection points corresponding to organic matter content and threshold

    黏土矿物 紧结态
    wu, 1/%
    稳结态
    (wu, 2-wu, 1)/%
    结合态
    wu, 2
    拐点
    wu/%
    蒙脱石 7.9 4.2 12.1 12.5
    伊利石 5.9 3.5 9.4 8.2
    高岭土 4.5 2.4 6.9 7.8
    下载: 导出CSV

    表  4   含有机质黏土-金属界面黏附力指标

    Table  4   Statistical table of adhesion between clay soil containing organic matter and metal surface

    黏土
    类型
    有机质含量
    wu/%
    峰值黏附力
    Fmax/kPa
    黏附问题
    严重程度
    蒙脱石 wu<12.5% 7.53~7.02 严重
    12.5%<wu<30% 7.02~3.83 较严重
    wu>30% 3.83~2.14 不严重
    伊利石 wu<8.2% 5.80~5.60 较严重
    8.2%<wu<30% 5.60~3.20 不严重
    wu>30% 3.20~2.35 不严重
    高岭土 wu<7.8% 3.95~3.80 不严重
    7.8%<wu<30% 3.80~3.04 不严重
    wu>30% 3.04~2.20 不严重
    下载: 导出CSV

    表  5   天然泥炭土基本物理力学性质

    Table  5   Characteristics of test peaty soils

    取样
    位置
    取样深度
    /m
    取样
    方法
    重度
    γ/(kN·m-3)
    含水率
    w/%
    孔隙比
    e
    液限
    wL/%
    塑限
    wp/%
    抗剪强度(CU) 有机质含量wu/%
    黏聚力c/kPa 内摩擦角φ/(°)
    场地一 12.4~13.1 坑底 16.3 72.0 1.98 84.2 33.2 14.2 4.6 13.4
    场地二 4.5~5.0 坑底 14.3 152.3 4.13 160.2 81.7 9.2 4.2 27.2
    场地三 18.6~18.8 钻孔 12.8 236.5 4.30 247.6 152.4 8.4 3.9 43.2
    场地四 2.4~3.0 坑底 11.2 301.4 5.12 290.0 152.8 7.6 2.8 50.5
    下载: 导出CSV
  • [1] 任露泉. 土壤黏附力学[M]. 北京: 机械工业出版社, 2011.

    REN Luquan. Soil Adhesion Mechanics[M]. Beijing: China Machine Press, 2011. (in Chinese)

    [2] 刘琦, 漆采玲, 马雯波, 等. 深海底质土-金属界面间黏附特性试验研究[J]. 岩土力学, 2019, 40(2): 701-708. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902033.htm

    LIU Qi, QI Cailing, MA Wenbo, et al. Experimental study of adhesion between deep-sea sediment and metal surface[J]. Rock and Soil Mechanics, 2019, 40(2): 701-708. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902033.htm

    [3]

    SASS I, BURBAUM U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 27-34. doi: 10.1007/s10064-008-0178-6

    [4]

    FEINENDEGEN M, ZIEGLER M, SPAGNOLI G, et al. A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields[C]// ISRM International Symposium-EUROCK 2010. OnePetro, 2010.

    [5]

    HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling[J]. Tunnelling and Underground Space Technology, 2013, 37: 96-106. doi: 10.1016/j.tust.2013.03.010

    [6] 邱长林, 张庆建, 闫澍旺, 等. 黏土黏附力试验研究[J]. 岩土力学, 2017, 38(5): 1267-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705006.htm

    QIU Changlin, ZHANG Qingjian, YAN Shuwang, et al. Experimental study of adhesion of clay[J]. Rock and Soil Mechanics, 2017, 38(5): 1267-1272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705006.htm

    [7]

    BASMENJ A K, MIRJAVAN A, GHAFOORI M, et al. Assessment of the adhesion potential of kaolinite and montmorillonite using a pull-out test device[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(4): 1507-1519. doi: 10.1007/s10064-016-0921-3

    [8]

    BURBAUM U, SASS I. Physics of adhesion of soils to solid surfaces[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 1097-1105. doi: 10.1007/s10064-016-0875-5

    [9]

    AZADEGAN B, MASSAH J. Effect of temperature on adhesion of clay soil to steel[J]. Ceretari Agronomice in Moldova, 2012, 2(150): 21-27.

    [10] 谭超. 黏土与盾构刀盘之间黏附特性研究[D]. 北京: 北京交通大学, 2021.

    TAN Chao. Study on Adhesion Between Clay and Shield Cutterhead[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)

    [11] 张先伟, 黎伟, 王勇, 等. 疏浚土的附着力特性试验研究[J]. 水运工程, 2014(3): 45-50, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201403012.htm

    ZHANG Xianwei, LI Wei, WANG Yong, et al. Test research on adhesion characteristics of dredged soils[J]. Port & Waterway Engineering, 2014(3): 45-50, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201403012.htm

    [12] 李俊伟, 佟金, 胡斌, 等. 不同含水率黏重黑土与触土部件互作的离散元仿真参数标定[J]. 农业工程学报, 2019, 35(6): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906016.htm

    LI Junwei, TONG Jin, HU Bin, et al. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 130-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906016.htm

    [13]

    HUAT B B K, KAZEMIAN S, PRASAD A, et al. State of an art review of peat: General perspective[J]. International Journal of Physical Sciences, 2011, 6(8): 1988-1996.

    [14]

    DOMZAL H. Preliinary studies of the influence of moisture on physico-mechanical properties of some soils with regard to estimation of optimum working conditions of implements[J]. Polish Jouranl of Soil Science, 1970, 3(1): 61-70.

    [15]

    MATERIALS A S F T. Standard Classification of Peat Samples by Laboratory Testing[S]. PA, USA: West Conshohocken, 2013.

    [16] 公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

    Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)

    [17] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [18]

    FAWZI H, RACHID Z. Effects of organic matter on physical properties of dredged marine sediments[J]. Waste and Biomass Valorization, 2018, 11(1): 389-401.

    [19]

    RASHID M A, BROWN J D. Influence of marine organic compounds on the engineering properties of a remoulded sediment[J]. Engineering Geology, 1975, 9(2): 141-154. doi: 10.1016/0013-7952(75)90036-8

    [20]

    BOOTH J S, DAHL A G. A note on the relationships between organic matter and some geotechnical properties of a marine sediment[J]. Marine Geotechnology, 1986, 6(3): 281-297. doi: 10.1080/10641198609388191

    [21]

    FEINENDEGEN M, ZIEGLER M, WEH M, et al. Clogging during EPB-tunnelling: occurrence, classification and new manipulation methods[C]//Proceedings ITA-AITES World Tunnel Congress, Helsinki. 2011.

    [22]

    WANG S, LIU P, ZHONG J. Influence factors of the adhesion strength of clayey soil[C]// Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference. Springer, Cham, 2021.

    [23]

    THEWES M, HOLLMANN F. Assessment of clay soils and clay-rich rock for clogging of TBMs[J]. Tunnelling and Underground Space Technology, 2016, 57: 122-128. doi: 10.1016/j.tust.2016.01.010

    [24] 杨益, 朱文骏, 李兴高, 等. 老黏土地层土压盾构刀盘堵塞渣土改良效果评价方法[J]. 北京交通大学学报, 2019, 43(6): 43-49, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm

    YANG Yi, ZHU Wenjun, LI Xinggao, et al. Evaluation method for muck conditioning of hard clay to prevent clogging in EPB tunnelling[J]. Journal of Beijing Jiaotong University, 2019, 43(6): 43-49, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm

    [25] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.

    HUANG Changyong. Soil Science[M]. Beijing: China Agriculture Press, 2000. (in Chinese)

    [26] 李少博, 徐英德, 高晓丹, 等. 离子界面行为在土壤有机无机复合体形成中的作用[J]. 中国生态农业学报, 2018, 26(11): 1682-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811016.htm

    LI Shaobo, XU Yingde, GAO Xiaodan, et al. The role of ionic interfacial behaviors in formation of soil organic-inorganic complexes[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1682-1691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811016.htm

    [27]

    TAVENAS F A, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. Part II: Permeability characteristics[J]. Canadian Geotechnical Journal, 2011, 20(4): 645-660.

    [28] 王磊, 应蓉蓉, 石佳奇, 等. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 2017, 54(4): 805-818. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704001.htm

    WANG Lei, YING Rongrong, SHI Jiaqi, et al. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 2017, 54(4): 805-818. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704001.htm

    [29]

    SOLLINS P, SWANSTON C, KLEBER M, et al. Organic C and N stabilization in a forest soil: evidence from sequential density fractionation[J]. Soil Biology and Biochemistry, 2006, 38(11): 3313-3324. doi: 10.1016/j.soilbio.2006.04.014

    [30]

    NAVON R, HERNANDEZ-RUIZ S, CHOROVER J, et al. Interactions of carbamazepine in soil: effects of dissolved organic matter[J]. Journal of Environmental Quality, 2011, 40(3): 942-948. doi: 10.2134/jeq2010.0446

    [31] 傅积平. 土壤结合态腐殖质分组测定[J]. 土壤通报, 1983, 40(3): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB198302012.htm

    FU Jiping. Grouping determination of soil-bound humus[J]. Chinese Journal of Soil Science, 1983, 40(3): 36-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB198302012.htm

    [32]

    LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261-273. doi: 10.1111/gcb.14859

    [33]

    PAPUGA K, KASZUBKIEWICZ J, KAWALKO D, et al. Effect of organic matter removal by hydrogen peroxide on the determination of soil particle size distribution using the dynamometer method[J]. Agriculture-Basel, 2022, 12(2): 1-14.

    [34] 桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报, 2015, 37(8): 1390-1398. doi: 10.11779/CJGE201508005

    GUI Yue, YU Zhihua, LIU Haiming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese) doi: 10.11779/CJGE201508005

    [35] 蒋忠信. 滇池泥炭土[M]. 成都: 西南交通大学出版社, 1994.

    JIANG Zhongxin. Dianchi Peat Soil[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese)

图(17)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 网络出版日期:  2024-03-14
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回