Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Italic/Main.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于相似性原则的橡胶颗粒-砂混合物热导率理论模型

张涛, 杨玉玲, 张家铭, 周逸文, 刘松玉

张涛, 杨玉玲, 张家铭, 周逸文, 刘松玉. 基于相似性原则的橡胶颗粒-砂混合物热导率理论模型[J]. 岩土工程学报, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333
引用本文: 张涛, 杨玉玲, 张家铭, 周逸文, 刘松玉. 基于相似性原则的橡胶颗粒-砂混合物热导率理论模型[J]. 岩土工程学报, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333
ZHANG Tao, YANG Yuling, ZHANG Jiaming, ZHOU Yiwen, LIU Songyu. Theoretical model for thermal conductivity of rubber-sand mixtures based on similarity heat conduction principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333
Citation: ZHANG Tao, YANG Yuling, ZHANG Jiaming, ZHOU Yiwen, LIU Songyu. Theoretical model for thermal conductivity of rubber-sand mixtures based on similarity heat conduction principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333

基于相似性原则的橡胶颗粒-砂混合物热导率理论模型  English Version

基金项目: 

国家自然科学基金项目 41907248

国家自然科学基金项目 41807260

详细信息
    作者简介:

    张涛(1986—),男,安徽肥东人,博士(后),副教授,主要从事环境岩土和特殊地基处理等方面的研究工作。E-mail: zhangtao_seu@163.com

    通讯作者:

    杨玉玲, E-mail: yangyuling_seu@163.com

  • 中图分类号: TU449

Theoretical model for thermal conductivity of rubber-sand mixtures based on similarity heat conduction principle

  • 摘要: 为准确定量评价人工隔热材料橡胶颗粒-砂混合物的导热性能,突破现有经验关系模型适用性较差的局限性,以Wiener土体热导率模型为框架,基于相似性原则,通过对混合物中各介质的导热性能进行分析,建立用于计算混合物热导率的理论模型,分析模型中计算参数的意义和确定方法,根据文献报道热导率测试数据,对比验证模型的有效性,并探讨模型进一步完善和拓展的研究方向。研究结果表明:橡胶颗粒和孔隙液的导热能力相似,可将两者归属为相似类传热介质应用于Wiener串、并联模型中;模型综合考虑了橡胶掺量、粒径比、饱和度和孔隙率等对橡胶颗粒-砂混合物结构和导热性能的影响,准确描述了混合物热导率和橡胶掺量、粒径比的相关关系,与实测数据的对比结果显示了较高的精确度。探明复杂应力状态和极端气候条件对刚-柔性颗粒混合物导热性能的作用规律,是进一步完善和拓展本文模型的重要研究内容。
    Abstract: The aims of this study are to quantitatively assess the thermal conductivity of the artificial rubber particles-sand mixtures and to break through the limited applicability of the current empirical models. Based on the Wiener model and similarity principle, the thermal conductivity of each constitute in the mixtures is analyzed, and a theoretical model for calculating the thermal conductivity of the mixtures is developed. The meaning and the determination method of each parameter in the new model are investigated. The validity of this new model is verified throgh the thermal conductivity data derived from the existing literatures, and further lines of inquiry for the thermal conductivity model are discussed and suggested. The results indicate that the rubber particles process comparable thermal-transmission capacity to the pore water within the rubber-sand mixtures. Therefore, they can be categorized as similar thermal transfer medium when applied in either series or parallel Wiener models. The new model systematically consider the influences of rubber content, particle size ratio, saturation level and porosity on the structure and the thermal conduction capacity of the rubber-sand mixtures. It accurately describes the relationship between the thermal conductivity of the mixtures and either the rubber content or the particle size ratio, and shows high accuracy to the measured data results. Exploring the effects of complex stress state and the extreme climatic conditions on thermal conduction property of the rigid-soft granular particle mixtures is suggested important for further investigating and improving the proposed new model.
  • 胶结砂砾石料是一种新型改良砂砾石材料,是在天然废弃石料、破碎石料或砂砾石料等材料中加入少量水泥、粉煤灰等胶凝剂形成的[1-2]。该材料的组成与碾压混凝土基本相同,但与一般碾压混凝土相比,该材料胶凝掺量较小,其集料可就地取材,安全经济,且对环境负面影响较小,已成功在一些胶凝砂砾石坝或围堰建设或边坡、地基加固工程中得到应用[2]。胶凝砂砾石坝正常运行时,尤其是泄水、蓄水时,其坝身某些部位经历卸载—再加载荷载作用。目前已有的胶结砂砾石料本构模型大多是依据一次加载的三轴试验结果建立的,基于这些模型得出的大坝应力、变形结果与该坝实际运行时的相应值存在一定差异。因此,用于工程筑坝的胶结砂砾石料本构模型有必要考虑其卸载—再加载特性的影响。

    当前,国内外学者们已对一些岩土材料的卸载—再加载力学性能进行一番探究:文献[37]对黏土、砂土卸载—再加载力学特性进行了研究,发现这些土料均存在卸载体缩现象;文献[8, 9]对多种粗粒土进行了卸载—再加载三轴固结排水剪切试验,重点分析了该类材料在卸载—再加载条件下的强度、变形特性,发现该材料存在卸载体缩现象,其抗剪能力高于一次加载,认为回弹模量Eur随应力水平的增加先增大后减小,但变化较小,随着围压的增加,该模量显著增大,此外,还给出了回弹模量与初始模量之比Kur的取值范围。Zhou等[10]通过开展不同次数卸载再加载条件下花岗岩风化土壤三轴试验研究,揭示了卸载—再加载路径对该材料强度特性、变形模量等力学特性的影响;杨贵等[11]为了研究高聚物堆石料,采用中型三轴剪切仪对其进行回弹模量试验,分析高聚物堆石料卸载—再加载条件下的变形特性,并结合邓肯-张模型,揭示了回弹模量随围压与应力水平变化的规律;Xu等[12]通过完成不同水分掺量条件下冻土三轴压缩和加载-卸载循环试验,探究了不同水分掺量对冻结黄土在受荷过程中的力学行为与破坏特征。与上述材料相比,虽然胶结砂砾石料静力三轴剪切试验研究已有一些报道[13-16],但大多还是采用一次加载的试验条件开展的,对胶结砂砾石料静力卸载—再加载力学特性的研究甚少。仅笔者给出了胶结砂砾石料的卸载回弹模量,但对整个卸载—再加载曲线特征未进行系统分析[17]。目前用于胶结砂砾石坝有限元计算的回弹模量[18]一般直接引用砂、黏土或者堆石料的回弹模量与初始模量比值与初始模量的乘积,也可尝试直接采用高聚物堆石料的回弹模量,但这些材料与胶结砂砾石料的集料或胶凝剂存在明显区别,上述材料包括回弹模量在内的卸载—再加载特性是否适用于胶结砂砾石料还尚未可知。

    基于此,本文采用大型三轴剪切仪对胶凝掺量100 kg/m3的胶结砂砾石料进行了卸载—再加载试验,并结合相应的一次加载试验结果[16],重点分析胶结砂砾石料在卸载—再加载条件下的强度特性、卸载模量以及卸载体缩随围压与应力水平变化的规律。

    参照《胶结颗粒料筑坝技术导则》(SL678— 2014)[19],此次三轴卸载—再加载试验中胶结砂砾石料采用与之前的胶结砂砾石料一次加载三轴试验[15-16]试件同样的试验材料与配比,即胶凝剂采用海螺牌普通硅酸盐水泥,水胶比取1.0,胶凝掺量为100 kg/m3;细骨料为南京市场出售的中粗砂;粗骨料为南京郊区的破碎石料,级配如图1所示。

    图  1  骨料配合比
    Figure  1.  Mixture ratios of aggregates

    三轴试验试件均采用直径300 mm,高700 mm的模具制成,制备过程:①依据骨料级配筛选骨料;②按胶结砂砾石料的材料组成与掺量将胶凝剂、粗细集料及水等材料混合并拌和均匀;③将胶结砂砾石料分5层装入圆筒模具,每层分别采用振动碾振实2 min,使试件成形;④试件养护龄期为28 d。在进行胶结砂砾石料三轴卸载—再加载试验之前,胶结砂砾石料试件需静置2~3 h,再借鉴高聚物堆石料的真空抽气饱和方法[11]进行本试验试件的饱和,确保其试验过程中测试的饱和度达到95%以上。

    胶结砂砾石料卸载—再加载三轴试验同样采用南京水利科学研究院岩土工程所的TYD-1500静动力三轴试验仪进行的,该仪器综合精度指数大于1%,最大围压为4 MPa,最大轴向载荷为1500 kN。

    试验试件加载至设定的应力水平后开始卸载,待偏应力卸载至0,再重新加载至原方案设定的下一个应力水平,继续卸载。试验过程中采用的卸载、加载阶段剪切速率均为1 mm/min。试验围压σ3分别为300,600,900,1200 kPa,卸载点的应力水平s分别为0.25,0.65,0.80。

    图2为胶凝掺量为100 kg/m3的胶结砂砾石料卸载—再加载三轴剪切试验应力-应变曲线,从图2中可看出:胶结砂砾石料的卸载阶段与其再加载阶段的曲线不能重合,形成了与粗粒土、天然黏土等材料形状[7-9]略有不同的新月形滞回圈,这在该材料动力特性研究中已得到报道[20],其主要原因为粗粒土、天然黏土等材料在卸载—再加载过程中仅出现塑性变形,而胶结砂砾石料除会发生塑性变形之外,其胶凝剂使该材料骨料颗粒之间存在一定的黏滞性;随着应力水平的增加,月牙形滞回圈形状基本不变,但尺寸逐渐变大,表明应力水平会在一定程度上影响胶结砂砾石料的黏滞性。

    图  2  偏应力与轴向应变的关系
    Figure  2.  Relationship between deviatoric stress and axial strain

    为了探究卸载—再加载方式对峰值强度的影响,从图2的试验曲线中提取不同围压下的峰值强度,并结合一次加载试验的峰值强度值[16],绘制出图3。从图3可看出:胶凝掺量为100 kg/m3的胶结砂砾石料峰值强度略高于单调加载的峰值强度;胶结砂砾石料峰值强度与围压的关系曲线为直线,其斜率与截距均略大于一次加载试验的相应斜率,表明卸载—再加载条件下胶结砂砾石料的内摩擦角与黏聚力均有所增加,但内摩擦角的改变较大,其主要原因可能是已发生胶结破损的骨料颗粒在卸载—再加载过程中会比一次加载试验发生更多地错动,试件的摩擦角度得到明显增加;胶结砂砾石料峰值强度与围压的关系可采用经典摩尔库伦准则表达式表示。

    图  3  峰值强度与围压σ3的关系
    Figure  3.  Relationship between peak strength and confining pressure

    回弹模量是胶结砂砾石料三轴卸载—再加载过程中回弹特性的重要量化指标之一。它一般是指卸载—再加载时的轴向应力σ1和轴向应变ε1的增量比值,

    Eur=Δσ1/Δε1=Δ(σ1σ3/Δε1 (1)

    在本次研究中,虽然胶结砂砾石料在卸载—再加载过程中出现与粗粒土不同的新月形滞回圈,但笔者仍以卸载点与再加载点连线的斜率作为胶结砂砾石料的回弹模量。

    图4给出了不同应力水平与围压下胶凝掺量100 kg/m3的胶结砂砾石料回弹模量,从图4可看出:各围压下胶结砂砾石料回弹模量随应力水平的增加略有改变,且变幅不超过10%,参考其他岩土材料的回弹特性研究的报道[9, 11],假定不同应力水平条件下胶结砂砾石料的回弹模量直接取平均值进行分析,结果见图5。从图5可看出,胶结砂砾石料的回弹模量随围压的增加而增大,但增幅减小,这也与堆石料、高聚物堆石料的回弹模量与围压的关系类似[9, 11]。为了定量描述胶结砂砾石料回弹模量与围压的关系,笔者首先尝试采用邓肯-张模型常用的相应表达式,

    Eur=Kurpa(σ3+pa)n, (2)
    图  4  不同围压条件下回弹模量Eur与应力水平的关系
    Figure  4.  Relationship between resilient modulus and stress level under different confining pressures
    图  5  回弹模量Eur与围压的关系
    Figure  5.  Relationship between resilient modulus and confining pressure

    式中Kur,nur为回弹模量参数,pa为标准大气压。从图5中的拟合结果可看出,该式能很好地拟合其关系。然而在实际工程中,由于当σ3=0时,胶结砂砾石料实际上仍是一个整体,不会松散,直接式(2)计算时,回弹模量为0,这与实际情况不符。为此,笔者认为胶结砂砾石料的回弹模量可借鉴之前提出的初始切线模量公式[16],即

    Eur=Kurpa[(σ3+pa)/pa]n (3)

    根据上述试验结果,整理出不同围压下应力水平对应的回弹模量平均值Eur与单调加载初始模量Ei 的比值N,并点绘出 N 与围压σ3的关系,如图6所示。在图6中,不同围压下的N值变化很小,可直接取其平均值,在胶凝砂砾石坝实际工程中,胶凝掺量100 kg/m3的胶结砂砾石料回弹模量一般建议取初始弹性模量的1.5倍。

    图  6  卸载回弹模量与初始模量之比N与围压的关系
    Figure  6.  Relationship between ratio of average of resilient modulus to initial modulus N and confining pressure

    图7为胶凝掺量100 kg/m3的胶结砂砾石料在不同应力水平下的体积应变曲线,从图7可以看出:在卸载—再加载过程中,胶结砂砾石料加载阶段的体积应变—轴向应变曲线与一次加载相同[16],即先增大后减小,表明胶结砂砾石料在加载条件下发生先剪缩后剪胀现象;当围压为300 kPa时,胶结砂砾石料发生卸载体胀现象,而围压高于600 kPa时,胶结砂砾石料在卸载时主要发生体缩现象,这是由于胶结物填充了颗粒间的孔隙,受围压的作用,破损的颗粒之间更加密实,摩擦力较大,颗粒很难翻越相邻颗粒完成重新排列,从而使试样卸载时更易出现体缩现象。不同围压条件下高聚物堆石料的卸载体胀、体缩机理也是如此。

    图  7  体积应变与轴向应变的关系
    Figure  7.  Relationship between volumetric strain and axial strain

    为了进一步分析胶结砂砾石卸载体缩量随围压或应力水平的变化特征,假定卸载体缩εv可为

    Δεv=εv2εv1, (4)

    式中,εv2,εv1分别对应于某一应力水平下卸载初始点与偏应力卸载至0时的体积应变。

    根据上述公式,在不同的围压和应力水平下,卸荷后的体积收缩如图8所示(“-”为卸载体缩,“+”为卸载体胀)。从图8中可以看出,随着围压的增加,胶结砂砾石料卸载体胀逐渐变为卸载体缩,但同一围压下,应力水平的不同仅略微影响卸载时体积改变量。

    图  8  体积改变量与应力水平的关系
    Figure  8.  Relationship between volumetric change and stress level

    对胶凝掺量100 kg/m3的胶结砂砾石料进行了3种应力水平下的胶结砂砾石料三轴卸载-再加载试验,系统分析了其卸载再加载力学特性,主要结论如下:

    (1)在不同应力水平与围压下的胶结砂砾石料卸载再加载方式可在一定程度上提高其颗粒的内摩擦角,增加峰值强度。

    (2)回弹模型随围压的增加明显增大,但受应力水平的影响较小,可直接取不同应力水平条件下的平均值;不同围压对回弹模量与初始模量的比值N影响较小,在实际胶凝砂砾石坝工程中,胶凝掺量100 kg/m3的胶结砂砾石料回弹模量约为初始模量的1.5倍。

    (3)随着围压的增加,胶结砂砾石料卸载体胀逐渐变为卸载体缩,但应力水平对卸载体缩量或体胀量的影响较小。

    以上结论可为胶凝砂砾石坝大坝或其它加固工程的数值计算提供重要的参考。

  • 图  1   橡胶颗粒-砂混合物热导率串联模型

    Figure  1.   Series thermal conductivity model for rubber-sand mixtures

    图  2   橡胶颗粒-砂混合物热导率并联模型

    Figure  2.   Parallel thermal conductivity model for rubber-sand mixtures

    图  3   水的热导率和温度的相关关系

    Figure  3.   Correlation of water thermal conductivity with temperature

    图  4   空气热导率与温度的相关关系

    Figure  4.   Correlation of air thermal conductivity with temperature

    图  5   权重系数η与橡胶掺量CR的相关关系

    Figure  5.   Relationship between weighting parameter η and rubber content CR

    图  6   参数b与粒径比Rd的相关关系

    Figure  6.   Relationship between parameter b and particle size ratio Rd

    图  7   橡胶颗粒-砂混合物热导率与橡胶掺量、粒径比相关关系

    Figure  7.   Correlations of thermal conductivity with rubber content and particle size ratio for rubber-sand mixtures

    图  8   预测热导率与实测热导率对比

    Figure  8.   Comparison between predicted and measured thermal conductivities of rubber-sand mixtures

    表  1   橡胶颗粒-砂混合物热导率测试结果[17]

    Table  1   Test results of thermal conductivity of rubber-sand mixtures

    符号 Rd CR/% kr-s, M/
    (W·(m·K)-1)
    kr-s, P/
    (W·(m·K)-1)
    纯砂 0 1.591 1.612
    R42T10 0.42 10 1.209 1.257
    R42T20 0.42 20 0.890 0.932
    R42T30 0.42 30 0.639 0.662
    R42T40 0.42 40 0.412 0.437
    R100T10 1.00 10 1.332 1.310
    R100T20 1.00 20 1.059 1.040
    R100T30 1.00 30 0.853 0.805
    R100T40 1.00 40 0.606 0.602
    R210T10 2.10 10 1.360 1.356
    R210T20 2.10 20 1.120 1.114
    R210T30 2.10 30 0.914 0.894
    R210T40 2.10 40 0.676 0.704
    R300T10 3.00 10 1.384 1.362
    R300T20 3.00 20 1.162 1.139
    R300T30 3.00 30 0.942 0.928
    R300T40 3.00 40 0.720 0.744
    R400T10 4.00 10 1.399 1.378
    R400T20 4.00 20 1.189 1.152
    R400T30 4.00 30 0.980 0.953
    R400T40 4.00 40 0.764 0.772
    下载: 导出CSV

    表  2   4个体积比参数计算结果

    Table  2   Calculated results of four volume ratio parameters

    CR/% φs/% φw/% φr/% φa/%
    0 52.63 5.92 0 41.45
    10 47.37 5.92 5.26 41.45
    20 42.10 5.92 10.53 41.45
    30 36.84 5.92 15.79 41.45
    40 31.58 5.92 21.05 41.45
    下载: 导出CSV

    表  3   不同橡胶掺量CR和粒径比Rd下权重系数η

    Table  3   Values of weighting parameter η of cases with varied CR and Rd

    CR/% Rd=0.42 Rd=1.0 Rd=2.1 Rd=3.0 Rd=4.0
    0 0.4003 0.4003 0.4003 0.4003 0.4003
    10 0.3330 0.3687 0.3769 0.3838 0.3882
    20 0.2697 0.3246 0.3444 0.3581 0.3669
    30 0.2140 0.2931 0.3157 0.3260 0.3401
    40 0.1510 0.2341 0.2641 0.2829 0.3017
    下载: 导出CSV
  • [1]

    BATINI N, ROTTA LORIA A F, CONTI P, et al. Energy and geotechnical behaviour of energy piles for different design solutions[J]. Applied Thermal Engineering, 2015, 86: 199-213. doi: 10.1016/j.applthermaleng.2015.04.050

    [2]

    OSWELL J M. Pipelines in permafrost: geotechnical issues and lessons 1 R. M. Hardy Address, 63rd Canadian Geotechnical Conference[J]. Canadian Geotechnical Journal, 2011, 48(9): 1412-1431. doi: 10.1139/t11-045

    [3]

    ZHANG T, CAI G J, LIU S Y, et al. Investigation on thermal characteristics and prediction models of soils[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1074-1086. doi: 10.1016/j.ijheatmasstransfer.2016.10.084

    [4]

    ZHANG T, YANG Y L, LIU S Y, et al. Evaluation of thermal conductivity for compacted Kaolin Clay-Shredded tire mixtures as thermal insulation material[J]. Construction and Building Materials, 2021, 308: 125094. doi: 10.1016/j.conbuildmat.2021.125094

    [5] 张涛, 蔡国军, 刘松玉, 等. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088. doi: 10.11779/CJGE201706014

    ZHANG Tao, CAI Guojun, LIU Songyu, et al. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. (in Chinese) doi: 10.11779/CJGE201706014

    [6]

    ASTM. Standard Practice for Use of Scrap Tires in Civil Engineering Applications[S]. West Conshohocken, PA: American Society for Testing and Materials, ASTM Standard D6270, 2008.

    [7]

    TANDON V, VELAZCO D A, NAZARIAN S, et al. Performance monitoring of embankments containing tire chips: case study[J]. Journal of Performance of Constructed Facilities, 2007, 21(3): 207-214. doi: 10.1061/(ASCE)0887-3828(2007)21:3(207)

    [8]

    YANG S, UKRAINCZYK N, KOENDERS E A B. Thermal conductivity of crumb-rubber-modified mortar using an inverse meso-scale heat conduction model[J]. Construction and Building Materials, 2019, 212: 522-530. doi: 10.1016/j.conbuildmat.2019.04.011

    [9]

    BALA A N, GUPTA S. Thermal resistivity, sound absorption and vibration damping of concrete composite doped with waste tire Rubber: a review[J]. Construction and Building Materials, 2021, 299: 123939. doi: 10.1016/j.conbuildmat.2021.123939

    [10]

    BENYAMINA S, ABADOU Y, GHRIEB A. Thermal properties of dune sand based-rubber mortar composites[J]. Materials Today: Proceedings, 2022, 56: 2199-2203. doi: 10.1016/j.matpr.2021.11.516

    [11] 刘飞禹, 符军, 王军, 等. 橡胶掺量对格栅-橡胶砂界面宏细观剪切特性影响[J]. 岩土工程学报, 2022, 44(6): 1006-1015.

    LIU Feiyu, FU Jun, WANG Jun, et al. Effects of rubber content on macro-and meso-scopic shear characteristics of geogrid-rubber sand interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1006-1015. (in Chinese)

    [12] 张涛, 刘松玉, 蔡国军. 橡胶-砂颗粒混合物压缩特性与胶结退化试验[J]. 中国公路学报, 2018, 31(11): 21-30.

    ZHANG Tao, LIU Songyu, CAI Guojun. Experimental on compression characteristics and bonding degradation of rubber-sand mixtures[J]. China Journal of Highway and Transport, 2018, 31(11): 21-30. (in Chinese)

    [13]

    YANG Y L, ZHANG T, REDDY K R, et al. Thermal conductivity of scrap tire rubber-sand composite as insulating material: experimental investigation and predictive modeling[J]. Construction and Building Materials, 2022, 332: 127387. doi: 10.1016/j.conbuildmat.2022.127387

    [14]

    WANG C, FOX P J. Analytical solutions for heat transfer in saturated soil with effective porosity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020095. doi: 10.1061/(ASCE)GT.1943-5606.0002324

    [15]

    CARSON J K, LOVATT S J, TANNER D J, et al. Thermal conductivity bounds for isotropic, porous materials[J]. International Journal of Heat and Mass Transfer, 2005, 48(11): 2150-2158. doi: 10.1016/j.ijheatmasstransfer.2004.12.032

    [16] 李镜培, 刘耕云, 周攀. 基于相似性原理超固结土不排水扩张半解析解[J]. 岩土力学, 2022, 43(3): 582-590.

    LI Jingpei, LIU Gengyun, ZHOU Pan. A semi-analytical solution for cavity undrained expansion in over-consolidated soils based on similarity transform theory[J]. Rock and Soil Mechanics, 2022, 43(3): 582-590. (in Chinese)

    [17]

    XIAO Y, NAN B W, MCCARTNEY J S. Thermal conductivity of sand–tire shred mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019012. doi: 10.1061/(ASCE)GT.1943-5606.0002155

    [18]

    LEE J, YUN T E, CHOI S U. The effect of particle size on thermal conduction in granular mixtures[J]. Materials, 2015, 8(7): 3975-3991. doi: 10.3390/ma8073975

    [19] 张涛, 刘松玉, 张楠, 等. 土体热传导性能及其热导率模型研究[J]. 建筑材料学报, 2019, 22(1): 72-80.

    ZHANG Tao, LIU Songyu, ZHANG Nan, et al. Research of soil thermal conduction properties and its thermal conductivity model[J]. Journal of Building Materials, 2019, 22(1): 72-80. (in Chinese)

    [20]

    CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. doi: 10.1139/t04-106

    [21]

    JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: University of Trondheim, 1975.

    [22]

    TOULOUKIAN Y S, POWELL R, HO C, et al. Thermophysical properties of matter, the TPRC data series. Volume 10. Thermal diffusivity. Data book[R]. New York: Plenum, 1974.

    [23]

    BI J, ZHANG M Y, LAI Y M, et al. A generalized model for calculating the thermal conductivity of freezing soils based on soil components and frost heave[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119166. doi: 10.1016/j.ijheatmasstransfer.2019.119166

    [24]

    OSTERKAMP T E. Freezing and thawing of soils and permafrost containing unfrozen water or brine[J]. Water Resources Research, 1987, 23(12): 2279-2285. doi: 10.1029/WR023i012p02279

    [25]

    SHAO J, ZARLING J. Thermal conductivity of recycled tire rubber to be used as insulating fill beneath roadways[R]. Washington D C: Transportation Research Board, No. INE/TRC 94.12, 1995. .

    [26]

    SHALABY A, AHMED KHAN R. Temperature monitoring and compressibility measurement of a tire shred embankment: Winnipeg, Manitoba, Canada[J]. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1808(1): 67-75. doi: 10.3141/1808-08

    [27]

    KANNULUIK W G, CARMAN E H. The temperature dependence of the thermal conductivity of air[J]. Australian Journal of Chemistry, 1951, 4(3): 305. doi: 10.1071/CH9510305

    [28]

    TONG F G, JING L R, ZIMMERMAN R W. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1358-1369. doi: 10.1016/j.ijrmms.2009.04.010

    [29]

    CHEN Y F, ZHOU S, HU R, et al. Estimating effective thermal conductivity of unsaturated bentonites with consideration of coupled thermo-hydro-mechanical effects[J]. International Journal of Heat and Mass Transfer, 2014, 72: 656-667. doi: 10.1016/j.ijheatmasstransfer.2014.01.053

    [30]

    LEE J S, DODDS J, SANTAMARINA J C. Behavior of rigid-soft particle mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 179-184. doi: 10.1061/(ASCE)0899-1561(2007)19:2(179)

    [31]

    ZHANG T, CAI G J, DUAN W H. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill[J]. Environmental Science and Pollution Research, 2018, 25(4): 3872-3883. doi: 10.1007/s11356-017-0742-3

    [32]

    ABU-JDAYIL B, MOURAD A H, HUSSAIN A. Thermal and physical characteristics of polyester-scrap tire composites[J]. Construction and Building Materials, 2016, 105: 472-479. doi: 10.1016/j.conbuildmat.2015.12.180

    [33] 丁智平, 穆龙海, 卜继玲, 等. 橡胶弹性元件低温刚度预测[J]. 振动与冲击, 2017, 36(14): 66-70.

    DING Zhiping, MU Longhai, BU Jiling, et al. Stiffness prediction of rubber springs at lower temperature[J]. Journal of Vibration and Shock, 2017, 36(14): 66-70. (in Chinese)

  • 期刊类型引用(3)

    1. 刘庆辉,王震,任红磊,闵芷瑞,蔡新. 基于BP神经网络的胶结砂砾石应力-应变关系预测. 水力发电. 2024(02): 30-34+77 . 百度学术
    2. 杨海华,夏宇,宋优建,何建新,杨武. 双向振动下高聚物胶凝戈壁土的动力特性试验研究. 世界地震工程. 2024(04): 151-163 . 百度学术
    3. 田巍巍,努尔哈斯木·穆哈买提汗,李文涛,李青山. 水泥灌浆胶结砂砾石抗剪特性试验研究. 水利水电科技进展. 2023(06): 60-65 . 百度学术

    其他类型引用(4)

图(8)  /  表(3)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  37
  • PDF下载量:  72
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-10-30
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回