Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盐溶液饱和岩土的本构理论及在黏土中的应用

胡亚元, 袁书行

胡亚元, 袁书行. 盐溶液饱和岩土的本构理论及在黏土中的应用[J]. 岩土工程学报, 2024, 46(2): 223-234. DOI: 10.11779/CJGE20221291
引用本文: 胡亚元, 袁书行. 盐溶液饱和岩土的本构理论及在黏土中的应用[J]. 岩土工程学报, 2024, 46(2): 223-234. DOI: 10.11779/CJGE20221291
HU Yayuan, YUAN Shuhang. Constitutive theory of geomaterials saturated with salt solution and its application in clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 223-234. DOI: 10.11779/CJGE20221291
Citation: HU Yayuan, YUAN Shuhang. Constitutive theory of geomaterials saturated with salt solution and its application in clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 223-234. DOI: 10.11779/CJGE20221291

盐溶液饱和岩土的本构理论及在黏土中的应用  English Version

基金项目: 

国家自然科学基金项目 52178360

详细信息
    作者简介:

    胡亚元(1968—),男,博士,副教授,主要从事环境土工和岩土本构关系的研究工作。E-mail:huyayuan@zju.edu.cn

  • 中图分类号: TU43

Constitutive theory of geomaterials saturated with salt solution and its application in clay

  • 摘要: 盐溶液中离子的化学活性会改变饱和岩土的力学性质,诱发其工程性能出现劣化甚至失效等岩土工程问题。为了研究化学活性对饱和岩土水力与变形特性的影响,基于混合物理论与热力学溶液理论,建立了盐溶液饱和岩土材料的本构理论框架。与以往研究不同,该理论将固相应变分解为孔隙率变化引起的骨架应变、固相材料变形引起的基质应变以及化学反应等物质交换引起的质量交换应变,用以凸显孔隙率在水-力-化学多场耦合机制中的关键作用;采用溶质的现时质量分数作为化学状态变量来反映化学活性的影响;利用自由能和耗散势分别建立弹性和塑性本构关系。根据该理论框架建立了NaCl溶液饱和黏土的固相、流相本构关系以及溶质的渗流-扩散方程,并得到了已有试验数据的验证,表明该框架可以指导盐溶液饱和岩土的本构建模工作。
    Abstract: The chemical activity of ions in salt solution will change the mechanical properties of saturated geomaterials, inducing geotechnical problems such as deterioration or even failure of engineering properties. In order to study the effects of chemical activity on the hydraulic and deformation properties of saturated geomaterials, a constitutive theory framework for geomaterials saturated with salt solution is established based on the mixture theory and thermodynamic solution theory. Different from the previous studies, the solid phase strain is decomposed into the skeleton one caused by porosity change, the matrix one caused by solid material deformation, and the mass exchange one caused by material exchange such as chemical reaction, to highlight the key role of porosity in the hydro-mechanical-chemo multi-field coupling mechanism. This theory adopts the current mass fraction of solute as the chemical state variable to reflect the effects of chemical activity. The free energy and dissipation potential are used to establish the elastic and plastic constitutive relations, respectively. Based on the above theoretical framework, the constitutive relations of solid and fluid phases for the clay saturated with NaCl solution and the seepage-diffusion equation for the solute are established. The constitutive model is validated by the experimental data, which proves that the framework can guide the establishment of the constitutive model for the geomaterials saturated with salt solution.
  • 中国属多震国家,很多大型水利工程兴建在强震地区,在地震作用下,它们可能发生裂隙、下沉、坍塌甚至破坏,不仅将对工程本身造成损失,而且会带来巨大的次生灾害,后果十分严重,因此,有关地震方面的研究历来受到重视。

    分析表明,目前研究地震破坏的方法大致可分为3类:一是数值模拟,其计算结果受计算参数和本构数学模型的影响很大;二是现场灾后调查,通过对地震现场破坏现象的调查,研究分析地震的破坏机理及抗震措施,由于实际地震的时空不确定性和复杂性,这类研究比较表观,不能重复,且无法取得地震全过程实测资料与数值分析结果进行相互验证;三是振动台试验方法,常规地面上的振动台模型试验由于无法模拟岩土材料的重力作用,因此多用于刚性材料的结构试验,而采用离心机振动台,则可以在原型应力条件下,在模型底部产生可控制的地震波,从而可以通过各种监测手段直接获得地震引起的岩土结构物的动力变形和稳定特性。因此土工离心机振动台被国内外岩土工程界认为是最有效的地震模拟试验手段,通过与数值模拟分析相互补充和验证,可以提高土工抗震研究水平,解决相关的岩土工程抗震问题[1-6]

    鉴于离心机振动台在抗震研究方面的突出优势,南京水利科学研究院在2002年自行研制了中国第一台NS-1型电液式土工离心机振动台[7],并利用该振动台研究了某混凝土面板堆石坝体的地震加速度反应特性、面板应变反应特性、坝体的变形特性等[4]。试验结果表明,该离心机振动台能满足岩土工程地震问题研究的要求,提供了一个非常有效的研究手段,可在工程实际中大力推广应用。

    为了更好地满足科研和工程需要,南京水利科学研究院在此基础上研制了性能更可靠、技术指标更先进的NS-2型离心机振动台系统。本文主要介绍了该设备的设计关键技术和性能指标,给出其主要功能特点和技术参数。通过开展某沥青混凝土心墙砂砾石坝动态离心模型试验,初步验证了离心机振动台系统性能指标。

    NS-2型离心机振动台是由南京水利科学研究院和中国工程物理研究院联合研制,采用电液伺服液压驱动,实现水平单向振动(垂直于离心机转臂),如图1所示。主要由机械系统、液压系统、伺服控制系统、动态数据采集系统及离心模型试验辅助设备等组成,其中液压系统是系统的动力机构,机械系统提供负载运动支承以及试验体安放平台,伺服控制系统完成地震波形的模拟加载控制,系统组成如图2所示。

    图  1  离心机振动台示意
    Figure  1.  Sketch of centrifuge shaking table
    图  2  离心机振动台组成
    Figure  2.  Components of centrifuge shaking table

    根据离心机振动台模型试验研究的国内现状和所配置的土工离心机运行情况,同时考虑到土木和水利工程的实际情况,设计采用如下技术参数:

    a)振动方向:一维水平振动(垂臂向);

    b)驱动方式:液压(蓄能器)驱动;

    c)最大振动加速度:amax=20g;最大速度:Vmax=0.5 m/s;最大振动幅值:Amax=5 mm;

    d)最大振动时间:3 s

    e)频率范围:20~200 Hz;

    f)最大有效负载(含模型箱、模型、以及其它辅助装备):Mmax=500 kg;

    g)振动台控制:利用以太网通过滑环实现通讯;

    h)激振波形:地震波、随机波;

    i)最大离心加速度:80g

    机械结构包括:滚柱导轨、振动台面、剪切模型箱、以及激振系统安装底板。

    安装底板作为激振系统的安装基础,向下连接离心机吊篮、向上固定系统结构;滚柱导轨作为运动支承安装在底板上;振动台面通过滑块安装在滚柱导轨上,模型及模型箱作为振动负载安装在振动台面上。

    液压系统包括:伺服液压缸一套、蓄能器组一套、21 MPa油源、以及离心机上的供油系统等。

    液压缸安装在吊篮底板中轴线上,背负一台MOOG电液伺服阀为液压缸供油;在吊篮内布置一组小容量蓄能器作为伺服阀的进、回油及供油稳压配套设备,在离心机大臂上布置一组大容量蓄能器作为激振系统主油路的供油设备,重新配置21 MPa油源。如图3所示。

    图  3  离心机振动台管路系统
    Figure  3.  Piping of centrifuge shaking table

    伺服控制系统包括:伺服驱动系统、上位控制系统、数据测量采集系统。伺服驱动系统布置在离心机上仪器仓内,包括伺服驱动器、运动控制器以及配套的供电设备,实现伺服液压缸的位移跟随控制,具有预设凸轮曲线跟踪、自动调零、自动标定等功能;上位控制系统放置在实验控制间,安装有地震波形再现软件一套,实现地震波加速度振动波形的信号处理、地震波响应测量及控制,并具有试验数据和试验曲线的实时测量、屏显、存储、数据管理等功能,如图4;试验数据测量采集系统由传感器及信号采集设备组成,为伺服控制、安全保护、试验数据分析提供支持。

    图  4  波形控制系统
    Figure  4.  Waveform control system

    在南京水利科学研究院NHRI400 g·t大型土工离心机和NS-2型离心机振动台上开展某沥青混凝土心墙砂砾石坝的动态离心模型试验,限于篇幅,这里只介绍坝体模型试验的部分结果。振动台和离心机总体布置见图5

    图  5  总体布置图
    Figure  5.  General layout

    从目前来看即使用世界最大的离心机要等比尺模拟全部的坝体仍然是不可能的,因此,本项研究采用不等比尺的离心模型试验方法,即模型几何比尺ηl小于加速度比尺的倒数1/ηg,振动台模型箱净尺寸为700 mm×350 mm×650 mm(长×宽×高)。模型设计时取大坝标准剖面,按平面问题进行试验。模拟范围:竖向从建基面2176 m高程到坝顶2304.5 m高程,即整个坝高128.50 m,顺河向取坝轴线上游160 m、下游155 m,共315 m宽。标准剖面的上游坝坡为1∶2.75~1∶2.25,下游坝坡为1∶1.8~1∶1.6;而模型模拟范围内上游坝坡为1∶2.75~1∶2.5,下游坝坡为1∶1.8~1∶1.7,不考虑马道和上坝公路,试验将上、下游坝坡简化成同一坡度,上游坝坡取1∶2.75,下游坝坡取1∶2.6。模型几何比尺ηl =1∶450,离心加速度比尺ηg =40。模型布置见图6

    图  6  模型试验布置图
    Figure  6.  Layout of model tests

    本次试验输入波形为实际地震波,地震峰值加速度有2个:设计地震波516.5g(50 a超越概率2%场地波),对应无抗震措施模型M1和有抗震措施模型M3;校核地震波643.3g(100年超越概率2%场地波),对应无抗震措施模型M2和有抗震措施模型M4。模型试验所需筑坝材料取自现场,根据以往粒径效应研究成果,模型土料的限制粒径应小于土作用构件最小边长的1/15~1/30,原型砂砾石料的最大粒径为300 mm,离心振动台模型砂砾石料的限制粒径取为20 mm,存在一个对超粒径颗粒进行处理的问题。依据《水电水利工程粗粒土试验规程》DL/T5356—2006,把原级配缩制成试验级配最常用的有相似级配法和等量替代法。根据现场检测级配曲线,用相似级配法与等量替代法相结合的方法确定砂砾石料的试验级配,如图7所示,其不均匀系数和曲率系数与现场料相近。沥青砼心墙采用有机玻璃板模拟,心墙厚度按抗弯刚度相似条件确定;模型护坡采用1~2 mm厚的砼,由于厚度较薄,不会影响坝体的变形或破坏;有抗震措施是指在筑坝材料区域铺设土工格栅,土工格栅采用纱窗模拟,抗拉强度要求满足相似条件,为了模拟实际工程中筑坝材料嵌入格栅的情形,模型格栅在铺设前,需要在上下面各刷一层胶,使其能够粘合少量的堆石料,从而可以模拟筑坝材料嵌入格栅的效果。

    图  7  砂砾石料颗粒级配曲线
    Figure  7.  Grain-size distribution curves of gravel

    为了量测坝体地震加速度反应,在坝轴线上沿高程2202.4,2224.8,2246.9,2269.8,2290.1 m共布置5个加速度计,同时在坝顶布置1个激光位移传感器,测试坝体地震震陷。

    以下给出的所有试验结果均已根据模型相似律换算至原型。

    (1)无抗震措施模型试验

    a)坝体加速度反应

    图8图9分别给出了模型M1和M2对应的建基面原型场地波和试验实际输入波时程线,前者目标波峰值分别为504.514g和-510.21g,输入波峰值分别是501.937g和-523.127g;后者目标波峰值分别为645.023g和-644.977g,输入波峰值分别是646.388g和-649.306g,从中可以看出,波形的频响特性较为吻合,试验输入波形较好地再现了目标场地波。

    图  8  模型M1目标地震波和实际输入波时程曲线
    Figure  8.  Time histories of target seismic waves and actual input waves for model M1
    图  9  模型M2目标地震波和实际输入波时程曲线
    Figure  9.  Time histories of target seismic waves and actual input waves for model M2

    图10给出了无抗震措施情况下坝体在2种场地波条件下的最大加速度和放大系数随坝高的变化。

    图  10  坝体坝轴线最大加速度和放大系数沿坝高分布
    Figure  10.  Distribution of maximum acceleration and amplification coefficient of acceleration along dam height

    由此可知:①在基岩输入地震加速度的作用下,坝体地震加速度反应随着高程的增加而相应增大,呈现出明显的放大效应;②坝体加速度反应随坝高的变化可以按约2/3坝高为界,大致分成两个线性变化段,上部的加速度放大效应强于下部;③随着基岩输入地震加速度的增加,坝体加速度放大系数总体上略有减小;④无抗震措施情况下坝体坝顶地震加速度放大系数约为2.7~3.0。

    b)坝体破坏模式

    图11图12分别表示无抗震措施情况坝体在设计地震波作用下(M1)和校核地震波作用下(M2)的破坏情况。

    图  11  M1坝体破坏
    Figure  11.  Dam failure of M1
    图  12  M2坝体破坏
    Figure  12.  Dam failure of M2

    从上述试验照片可以看出:①无抗震措施情况坝体在设计地震波条件下,下游未发现明显破坏,上游出现了一定程度的坝体破坏;在蓄水位处可见明显的护坡开裂;②无抗震措施情况坝体在校核地震波条件下,下游未发现明显破坏,上游出现了较大程度的坝体破坏;在蓄水位处和坝顶处均有明显的护坡开裂。

    (2)有抗震措施模型试验

    图13,14分别给出了2种场地波条件下有抗震措施和无抗震措施坝体的最大加速度和放大系数随坝高的变化。

    图  13  设计地震波作用下坝轴线加速度及放大系数分布
    Figure  13.  Distribution of acceleration and amplification coefficient of acceleration under design seismic waves
    图  14  校核地震波作用下坝轴线加速度及放大系数分布
    Figure  14.  Distribution of acceleration and amplification coefficient of acceleration under check seismic waves

    由上述图中可以看出:①在基岩输入地震加速度的作用下,有抗震措施坝体地震加速度反应随着高程的增加而相应增大,呈现出明显的放大效应;②有抗震措施坝体加速度反应随坝高的变化可以按约2/3坝高为界,大致分成两个线性变化段,上部的加速度放大效应强于下部;③在抗震措施加固范围以下高程,有抗震措施和无抗震措施坝体的加速度放大效应大体一致;在抗震措施加固范围内,有抗震措施坝体的加速度放大效应略强于无抗震措施坝体;④有抗震措施坝体坝顶地震加速度放大系数约为3.0~3.4。

    从试验结果分析可知,离心机振动台较好地再现了在地震作用下坝体内部加速度动态响应规律及坝体失稳破坏模式,为工程设计部门提供了参考依据,进一步验证了NS-2型离心机振动台设计性能指标完全满足工程科研需要。

    (1)介绍南京水利科学研究院40 g·t离心机振动台设计关键技术和性能指标,主要包括机械系统、液压系统、伺服控制系统,可为土工离心机振动台建设和规划提供参考。

    (2)NHRI-40 g·t离心机振动台的技术指标科学合理,设备的研制思路正确,波形控制系统可实现对目标波形的跟踪、调节和再现,目标波形和再现波形拟合度高;基于Labview编制的数据采集系统包括16个应变采集通道和24个电压采集通道,对试验数据进行实时测量、显示和存储。

    (3)通过该离心机振动台测得国内某大坝的地震加速度响应分布表明,振动台的主要技术指标和性能达到了预期目的,完全能满足工程试验研究的需求。

    致谢: 感谢美国华盛顿州立大学数学与统计系Lynn Schreyer (原名Lynn Schreyer Bennethum) 教授在建构和完善化学本构理论方面的帮助和指导。
  • 图  1   骨架弹性体应变随平均有效应力变化

    Figure  1.   Variation of elastic volumetric strain of skeleton with average effective stress

    图  2   骨架塑性体应变随平均有效应力变化

    Figure  2.   Variation of plastic volumetric strain of skeleton with average effective stress

    图  3   塑性压缩线斜率随NaCl质量分数变化

    Figure  3.   Variation of slope of plastic compression line with NaCl mass fraction

    图  4   εp1HV - ln˜P平面上盐溶液饱和黏土的压缩曲线

    Figure  4.   Compression curves of clay saturated with salt solution in εp1HV - ln˜P plane

    图  5   屈服应力的模拟结果与试验数据对比

    Figure  5.   Comparison of simulated results and experimental data for yield effective stress

    图  6   化学塑性体应变随NaCl溶液质量分数变化

    Figure  6.   Variation of chemical plastic strain with mass fraction of NaCl solution

    图  7   等向固结试验数据与模拟结果对比

    Figure  7.   Comparison of experimental data of isotropic consolidation with simulation results

    图  8   NaCl溶液体应变随NaCl质量分数变化

    Figure  8.   Variation of strain of NaCl solution with NaCl mass fraction

    表  1   参数λcλ取值情况

    Table  1   Values of parametersλcandλ

    取值 ccF<ccFc
    ˜P<˜Pc
    ccFccFc
    ˜P<˜Pc
    ccFccFc
    ˜P˜Pc
    ccF<ccFc
    ˜P˜Pc
    λ λe λe λe+λp(ccF) λe+λp(ccF)
    λc 0 λc λc 0
    下载: 导出CSV

    表  2   等向压缩试验的模型参数选取

    Table  2   Model parameters for isotropic compression tests

    λp1 λp2 λp3 λc λe
    0.0105 -0.147 0.0099 1/0.09 0.014
    εcp εHmax ˜Pref/kPa ˜Pc(0)/kPa KRS/GPa
    -0.08 0.02 5 75 20
    下载: 导出CSV
  • [1] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001

    CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001

    [2]

    WEI C F. A theoretical framework for modeling the chemomechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21.

    [3] 徐永福. 考虑渗透吸力影响膨润土的修正有效应力及其验证[J]. 岩土工程学报, 2019, 41(4): 631-638. doi: 10.11779/CJGE201904005

    XU Yongfu. Modified effective stress induced by osmotic suction and its validation in volume change and shear strength of bentonite in saline solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 631-638. (in Chinese) doi: 10.11779/CJGE201904005

    [4]

    YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621-2630. doi: 10.1007/s12665-014-3169-x

    [5] 颜荣涛, 赵续月, 于明波, 等. 盐溶液饱和黏土的等向压缩特性[J]. 岩土力学, 2018, 39(1): 129-138.

    YAN Rongtao, ZHAO Xuyue, YU Mingbo, et al. Isotropic compression characteristics of clayey soil saturated by salty solution[J]. Rock and Soil Mechanics, 2018, 39(1): 129-138. (in Chinese)

    [6]

    DI MAIO C, SANTOLI L, SCHIAVONE P. Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mechanics of Materials, 2004, 36(5/6): 435-451.

    [7]

    SRIDHARAN A. Engineering behavior of clays: influence of mineralogy[C]//Chemo-mechanical Coupling in Clays: From Nano-scale to Engineering Applications. Maratea: Swets and Zeitlinger, 2001.

    [8]

    DO N GUIMARÃES L, GENS A, SÁNCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Géotechnique, 2013, 63(3): 211-234.

    [9]

    DOMINIJANNI A, MANASSERO M, PUMA S. Coupled chemical-hydraulic-mechanical behaviour of bentonites[J]. Géotechnique, 2013, 63(3): 191-205. doi: 10.1680/geot.SIP13.P.010

    [10]

    BENNETHUM L S, MURAD M A, CUSHMAN J H. Macroscale thermodynamics and the chemical potential for swelling porous media[J]. Transport in Porous Media, 2000, 39(2): 187-225. doi: 10.1023/A:1006661330427

    [11]

    HASSANIZADEH M, GRAY W G. General conservation equations for multi-phase systems: 1. Averaging procedure[J]. Advances in Water Resources, 1979, 2: 131-144. doi: 10.1016/0309-1708(79)90025-3

    [12]

    MA T, WEI C, CHEN P, et al. Chemo-mechanical coupling constitutive model for chalk considering chalk–fluid physicochemical interaction[J]. Géotechnique, 2019, 69(4): 308-319. doi: 10.1680/jgeot.17.P.115

    [13]

    LORET B, HUECKEL T, GAJO A. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids and Structures, 2002, 39(10): 2773-2806. doi: 10.1016/S0020-7683(02)00151-8

    [14]

    CHENG A H D. Poroelasticity[M]. Berlin: Springer, 2016.

    [15] 胡亚元. 饱和多孔介质的超黏弹性本构理论研究[J]. 应用数学和力学, 2016, 37(6): 584-598.

    HU Yayuan. Study on the super viscoelastic constitutive theory for saturated porous media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. (in Chinese)

    [16] 胡亚元. 基于混合物理论的饱和岩石弹塑性模型[J]. 岩土工程学报, 2020, 42(12): 2161-2169. doi: 10.11779/CJGE202012001

    HU Yayuan. Elastoplastic model for saturated rock based on mixture theory[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2161-2169. (in Chinese) doi: 10.11779/CJGE202012001

    [17]

    BOWEN R M. Theory of Mixtures[M]. Amsterdam: Elsevier, 1976: 1-127.

    [18] 陈正汉. 固-液-气三相多孔介质相互作用的动力学理论[C]//. 全国首届结构与介质相互作用的理论及其应用学术研讨会文集. 南京: 河海大学出版社, 1993: 134-147.

    CHEN Zhenghan. Dynamics theory of solid-liquid-gas three-phase porous media interaction[C]// Proceedings of the First National Symposium on Theory and Application of Interaction between Structure and Medium. Nanjing: Hohai University Press, 1993: 134-147. (in Chinese)

    [19]

    CHEN Zhenghan. A dynamical theory of interaction of triphase porous media[C]// Proc 2nd lnt Conf on Non-Linear Mechanics. Beijing: Peking Univ Press, 1993: 889-892.

    [20]

    COLLINS I F, HOULSBY G T. Application of thermomechanical principles to the modelling of geotechnical materials[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1997, 453: 1975-2001. doi: 10.1098/rspa.1997.0107

    [21]

    BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J]. International Journal of Solids and Structures, 2006, 43(6): 1764-1786.

    [22] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.

    CHEN Zhenghan. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese)

    [23] 陈正汉. 岩土力学的公理化理论体系[J]. 应用数学和力学, 1994, 15(10): 901-910.

    CHEN Zhenghan. An axiomatics of geomechanics[J]. Applied Mathematics and Mechanics, 1994, 15(10): 901-910. (in Chinese)

    [24] 赵成刚, 刘艳. 连续孔隙介质土力学及其在非饱和土本构关系中的应用[J]. 岩土工程学报, 2009, 31(9): 1324-1335.

    ZHAO Chenggang, LIU Yan. Continuum porous medium soil mechanics and its application in constitutive relationship of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1324-1335. (in Chinese)

    [25] 刘艳, 赵成刚, 蔡国庆. 理性土力学与热力学[M]. 北京: 科学出版社, 2016.

    LIU Yan, ZHAO Chenggang, CAI Guoqing. Rational Soil Mechanics and Thermodynamics[M]. Beijing: Science Press, 2016. (in Chinese)

    [26] 苏长荪, 谭连城, 刘桂玉. 高等工程热力学[M]. 北京: 高等教育出版社, 1987.

    SU Changsun, TAN Liancheng, LIU Guiyu. Advanced Engineering Thermodynamics[M]. Beijing: Higher Education Press, 1987. (in Chinese)

    [27]

    BOWEN R M. Compressible porous media models by use of the theory of mixtures[J]. International Journal of Engineering Science, 1982, 20(6): 697-735.

    [28] 陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版社, 2022: 502-509.

    CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture & Building Press, 2022: 502-509. (in Chinese)

    [29] 李如生. 非平衡态热力学和耗散结构[M]. 北京: 清华大学出版社, 1986.

    LI Rusheng. Non-equilibrium ThermoDynamics and Dissipative Structure[M]. Beijing: Tsinghua University Press, 1986. (in Chinese)

    [30] 黄筑平. 连续介质力学基础[M]. 2版. 北京: 高等教育出版社, 2012: 83-121.

    HUANG Zhuping. Fundamentals of Continuum Mechanics[M]. 2nd ed. Beijing: Higher Education Press, 2012: 83-121. (in Chinese)

    [31] 孙德安, 孙文静, 孟德林. 膨胀性非饱和土水力和力学性质的弹塑性模拟[J]. 岩土工程学报, 2010, 32(10): 1505-1512. http://cge.nhri.cn/cn/article/id/8363

    SUN De'an, SUN Wenjing, MENG Delin. Elastoplastic modelling of hydraulic and mechanical behaviour of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1505-1512. (in Chinese) http://cge.nhri.cn/cn/article/id/8363

    [32]

    SIMIONA I, GRIGORAS C G, ROSU A M, et al. Mathematical modelling of density and viscosity of NaCl aqueous solutions[J]. Journal of Agroalimentary Processes and Technologies, 2015, 21(1): 41-52.

  • 期刊类型引用(1)

    1. 王永志,贾仕林,韩俊伟,王体强,张雪东,汤兆光,周燕国,张宇亭. 迭代算法与柔性结构对离心机振动台控制性能影响. 岩土工程学报. 2024(S1): 22-26 . 本站查看

    其他类型引用(4)

图(8)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-10-18
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回