• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水平循环荷载下软黏土大直径单桩承载性状离心机模型试验研究

曹光伟, 丁选明, 张鼎新, 张宇亭, 王春艳

曹光伟, 丁选明, 张鼎新, 张宇亭, 王春艳. 水平循环荷载下软黏土大直径单桩承载性状离心机模型试验研究[J]. 岩土工程学报, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276
引用本文: 曹光伟, 丁选明, 张鼎新, 张宇亭, 王春艳. 水平循环荷载下软黏土大直径单桩承载性状离心机模型试验研究[J]. 岩土工程学报, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276
CAO Guangwei, DING Xuanming, ZHANG Dingxin, ZHANG Yuting, WANG Chunyan. Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276
Citation: CAO Guangwei, DING Xuanming, ZHANG Dingxin, ZHANG Yuting, WANG Chunyan. Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276

水平循环荷载下软黏土大直径单桩承载性状离心机模型试验研究  English Version

基金项目: 

国家自然科学基金面上项目 51878103

国家自然科学基金面上项目 52178312

重庆市自然科学基金创新群体科学基金项目 cstc2020jcyj-cxttX0003

详细信息
    作者简介:

    曹光伟(1993—),男,博士研究生,主要从事桩基动力特性与近海风电基础方面的研究。E-mail: m_ma123@163.com

    通讯作者:

    丁选明, E-mail: dxmhhu@163.com

  • 中图分类号: TU473

Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests

  • 摘要: 大直径单桩在静、动荷载下的响应特性与传统小直径桩存在明显区别。为研究大直径单桩基础的循环响应,开展了水平循环荷载作用下软黏土大直径单桩离心机模型试验。通过各工况下单桩响应对比,研究了不同桩径和循环幅值比下大直径单桩基础的变形、刚度弱化及孔压累积规律。试验表明,循环次数引起得弯矩增加量不会超过首次加载最大弯矩的10%。随着单向循环荷载幅值的增加,大直径单桩-土系统会依次经历弹性段,弹塑性安定段和棘轮破坏段。单桩的卸载刚度、侧向累积位移与桩周土体超孔压均受循环幅值、循环次数的影响,其中卸载刚度还与桩径呈正相关。此外,大直径刚性桩桩底土(砂土)有非常可观的负超孔压累积,这可能会抵消土体弱化对整个桩侧向行为的影响。当单向循环荷载的幅值比小于68%时,整个桩-土体系具有安定性,桩周土抗力无明显弱化,建议对楔形流动深度内的土体p-y曲线加载刚度进行0.8的折减以考虑循环弱化效应。
    Abstract: The response characteristics of large-diameter monopiles under static and dynamic loads are obviously different from those of traditional small-diameter piles. To study their cyclic responses, the centrifuge tests on the large-diameter monopiles in soft clay under horizontal cyclic loading are carried out. Through a contrast study on the cyclic responses of monopiles under different working conditions, the laws of deformation characteristics, stiffness weakening and excess pore pressure accumulation of large-diameter monopiles are investigated. The test results show that the increase percentage of the bending moment caused by the number of cycles is less than 10% of the first maximum bending moment. With the increasing amplitude of one-way cyclic loads, the whole large-diameter pile-soil system can go through the elastic stage, elastoplastic shakedown stage and ratchet failure stage. The unloading stiffness, lateral cumulative displacement and excess pore pressure of soils around the piles are affected by the cyclic amplitude and number of cycles. Additionally, the unloading stiffness is also positively correlated with the pile diameter. The negative excess pore pressure can significantly accumulate at the pile toe of large-diameter rigid piles, which may offset the effects of soil weakening on the lateral behaviors of a monopile. When the amplitude ratio of the cyclic loads is below 68%, the whole pile-soil system is stable, and the lateral resistance of soils insignificantly weakens. It is recommended that the loading secant stiffness of p-y curve within the wedge soil flow zone should be reduced by 0.8 to consider the cyclic weakening effects.
  • 非饱和状态下的土体具有很高的强度[1],然而遇水湿化强度会迅速降低,局部可能达到饱和,该状态下的土压力值与非饱和条件下的值差别很大。多名学者统计显示大部分基坑事故都与水有关,此外,2019年6月8日南宁绿地中心基坑塌陷也是因为场地管道爆裂,非饱和土遇水湿化,作用在支护结构的土压力增大[2]。因此,亟需定量评估浸湿作用对非饱和土侧向土压力的影响,提出计算方法,减少此类事故发生。

    目前,对非饱和土压力研究获得了很大进展,但现有研究多从理论出发进行公式推导,1961年Coleman等[3]提出双变量理论,Fredlund便得到净应力与吸力的双变量理论,之后得到了扩展的朗肯土压力理论,但是在平时的设计和研究中,仍然采用朗肯土压力理论[4]计算非饱和土压力。姚攀峰等[5]提出了与扩展型朗肯土压力不同的计算方法广义朗肯土压力计算方法,陈铁林等[6]解决水位变化及降水条件下的土压力计算问题,根据K0定义推导K0求解式。任传健等[7]结合Fredlund非饱和土抗剪切与强化准则和经典的朗肯土压计算公式,得出考虑降水变化的土压计算公式。汪丁建等[8]在饱和土朗肯土压力分析基础上,推导出降雨条件下非饱和朗肯土压力。王晓亮等[9]将降雨和蒸发对基质吸力的影响引入到非饱和土抗剪强度公式中,得到K0随降雨定性变化,但没有定量结果。

    已有的大量研究充分表明水对静止土压力的影响不可忽略,但已有的计算公式复杂不实用,结果有待验证。导致现有非饱和土体仍采用饱和土理论的计算结果加安全储备来设计计算[10],安全系数是否足够不明确。为了使湿化条件下静止土压力增量的演化规律更明确,本文通过室内试验确定了其相关的变化规律、建立相应的计算模型,减小对安全施工的威胁。

    取北京延庆地区原状粉质黏土进行烘干、碾碎、过0.25 mm筛备用,进行基本物理性质测试,依据《土工试验方法标准:GB/T50123—2019》[11],结果见表 1

    表  1  土的基本物理性质
    Table  1.  Basic physical properties of soil
    最大干
    密度/
    (g·cm-3)
    最优含水率/% 液限
    wL/%
    塑限wP/% 塑性指数IP 土粒相对密度GS
    1.80 16.5 30.7 15.2 15.5 2.73
    下载: 导出CSV 
    | 显示表格

    选择干密度1.53 g/cm3(压实度0.85)、高度40 mm的标准环刀试样开展K0压缩试验,设5个不同的初始饱和度与4个不同的上覆荷载,具体方案见表 2

    表  2  浸水条件下非饱和粉质黏土试验方案
    Table  2.  Test schemes under water immersion conditions
    上覆荷载/kPa 加载过程 初始饱和度
    100/200/
    300/400
    100(200/300/400)kPa→湿化→逐级加载至1600kPa 0.2/0.3/0.4/
    0.5/0.6
    下载: 导出CSV 
    | 显示表格

    (1)仪器标定。本文采用JCY型K0固结仪来完成K0压缩试验,在气囊中充入与试样等体积的水,利用水各向等压特性标定仪器在竖向压力下对土压力的测量,根据试验数据拟合得到两仪器的标定系数[12]

    (2)制样并养护得到不同初始含水率试样。用饱和再风干的土样模拟经过了干湿循环的天然非饱和土,通过7 d密闭养护保证孔隙水分布均匀,见图 1

    图  1  准备不同初始含水率的试样
    Figure  1.  Preparation of samples with different initial moisture contents

    (3)加上覆荷载待稳定后进行湿化饱和,湿化稳定后养护7 d,再完成后续设定加载至试验结束。

    (4)卸压并整理仪器装置,将不同初始饱和度湿化前与湿化压缩后试样进行对比,如图 2所示。

    图  2  试验前后对比图
    Figure  2.  Comparison of soil samples before and after tests

    K0固结仪连接压力传感器采集数据,得到侧压力随时间变化关系[12],从而得到粉质黏土在5个不同初始饱和度Sr和4个不同上覆荷载P作用下发生湿化与湿化后继续加载的水平静止土压力-竖向压力的关系曲线,见图 3,因篇幅关系只展示Sr=0.2结果[12]。对于非饱和土一般采用水土合算计算土压力,此时侧压力传感器测量得到的相当于水土合算下的土压力。

    图  3  静止土压力随竖向压力变化关系(Sr=0.2)
    Figure  3.  Variation of static earth pressure with vertical pressure (Sr=0.2)

    湿化静止土压力增量Δσh统计见表 3,计算式为

    Δσh=σwσd
    (1)
    表  3  湿化静止土压力增量计算值统计
    Table  3.  Statistics of calculated increment static earth pressure
    初始饱和度Sr 0.2 0.3 0.4 0.5 0.6
    100 kPa下增量值 35.14 25.10 17.41 12.5 3.53
    200 kPa下增量值 68.95 48.38 33.32 22.97 6.31
    300 kPa下增量值 95.01 68.95 47.86 29.99 8.98
    400 kPa下增量值 118.02 90.00 60.99 35.97 10.11
    下载: 导出CSV 
    | 显示表格

    式中:σd为上覆荷载作用下湿化前静止土压力大小;σw湿化饱和后静止土压力大小。

    不同初始饱和度湿化过程的增湿水平不同,可使用湿化前初始饱和度表示增湿水平,即:Sr=1的增湿水平为0,Sr越小增湿水平越大。

    表 3可以看到湿化时静止土压力都有不同程度的增大,且初始饱和度Sr越低或上覆荷载P越大,静止土压力增量越大。图 3数据显示,湿化后继续加载呈线性且斜率基本一致,表明K0值大小近似一致,SrP的不同不会影响湿化饱和后K0大小。可能原因是:静止土压力系数主要由有效内摩擦角决定,饱和后有效内摩擦角接近,因此湿化饱和后K0近似一致。

    土体强度理论认为土颗粒间存在综合作用,包括吸力、胶结作用、德华力以及化学键等[4],非饱和土研究学者[13]一般认为土骨架受压为保证完整性依靠两部分力平衡:一是土颗粒间的基质吸力,取决于土体的含水量;另外是土颗粒间的胶结力,取决于土体内部的黏粒微量物质。静止土压力增量是由颗粒间胶结作用的减弱和基质吸力减小两方面原因引起的[14]。为推导计算模型引出中间变量0.65-Sr,如图 4所示,初始饱和度越小,湿化导致基质吸力减少量就越大,静止土压力增量就越大;湿化饱和后上覆荷载越大,对土体胶结力破坏就越大,如图 5所示,湿化饱和后的静止土压力增量,随上覆荷载增加而变大。

    图  4  静止土压力增量与初始饱和度关系
    Figure  4.  Variation of increment of static earth pressure increment with initial saturation
    图  5  静止土压力增量与上覆荷载关系
    Figure  5.  Variation of increment of static earth pressure with load

    土压力增量Δσh与上覆荷载P,初始饱和度Sr都呈线性关系,双线性模型见式(2),PSr确定时有一次函数式(3),(4)。当变量n=Sr+b1=0.65Sr时,土压力增量Δσhn成正比例,k1k2m为斜率,见图 4

    Δσh=k1n×k2m
    (2)
    k1n=k1Sr+b1
    (3)
    k2m=k2P+b2
    (4)

    P与其对应的k1k2m拟合得k1k2m = 0.60P+19.76,再将n代入式(2)中,得到式(5)。当初始饱和度Sr较大接近饱和土时,静止土压力增量为0,观察式(5),当饱和度Sr>0.65时,湿化不会引起静止土压力增加。

    Δσh={(0.60P + 19.76)(0.65Sr)(Sr0.65)0 (Sr>0.65)
    (5)

    为了更直观的表现增量的含义,将ΔSr=1Sr代入式(5),得到最终的增量表达式如下:

    Δσh={(0.60P+19.76)(ΔSr0.35)(ΔSr0.35)0(ΔSr<0.35)
    (6)

    以延庆某深基坑为背景,结合勘察数据,对上文的模型进行试算。该基坑开挖深度23 m,上表面有8 kPa的均布荷载,施工阶段饱和度0.25,已勘测到自然地面以下34 m地层特性,土体基本为粉质黏土。

    根据划分土层的重度与厚度计算出土层下表面荷载,并根据K0算出湿化前静止土压力σhiK0按经验值取0.3。根据式(6)算出静止土压力增量Δσhi,接着计算出湿化后静止土压力σwiσwi/σhi比值,计算值随深度变化绘制在图 6中,发现比值随深度增大而减小,但始终大于1.8,说明湿化对静止土压力影响较大。

    图  6  不同累计深度处静止土压力与其相关计算值关系
    Figure  6.  Static earth pressures and their correlation with depth

    由于本文采用重塑土进行试验,和天然土体湿化时侧压力变化结果不同,特别是黄土等结构性非饱和土,其湿化可能发生湿陷等行为,导致土压力演化较为复杂。本文研究结果仅适用于非结构性的非饱和土。

    本文通过开展室内试验,定量评估浸湿作用对非饱和土侧向土压力的影响,实测浸湿饱和作用下静止土压力增量的变化规律,建立相应的计算模型,通过应用发现设计时必须重视湿化的影响,并得到以下3点结论。

    (1)湿化饱和后,土体的静止土压力系数K0值与初始饱和度、上覆荷载无关。推测土体静止土压力系数K0值主要由有效内摩擦角决定,饱和后有效内摩擦角基本一致,故K0值大小近似一致。

    (2)湿化前的初始饱和度越低,湿化饱和后的静止土压力增量越大;且湿化饱和后的静止土压力增量,随湿化时的上覆荷载增加而变大。

    (3)基于试验数据和机理分析,得到了湿化条件下考虑上覆荷载与初始饱和度的双线性土压力增量计算模型;将其应用于某支挡工程,发现湿化后的土压力可达初始土压力1.8倍以上,设计时必须予以重视。

  • 图  1   试桩桩身传感器布置

    Figure  1.   Layout of sensors along test piles

    图  2   试验布置图

    Figure  2.   Schematic diagram of test layout

    图  3   典型的离心机模型包

    Figure  3.   Typical centrifuge model package

    图  4   抗剪强度分布

    Figure  4.   Profile of su along depth

    图  5   实测桩头荷载时程

    Figure  5.   History-time curves of measured loads

    图  6   单调荷载-位移曲线

    Figure  6.   Monotonic load-displacement curves

    图  7   加载点处循环荷载-位移曲线

    Figure  7.   Load-diaplacement curves at loading point

    图  8   平均等效阻尼比

    Figure  8.   Average equivalent damping ratios

    图  9   卸载刚度与循环次数关系

    Figure  9.   Variation of unloading stiffness with number of cycles

    图  10   归一化卸载刚度与循环次数关系

    Figure  10.   Variation of normalized unloading stiffness with number of cycles

    图  11   桩头侧向累积位移

    Figure  11.   Lateral accumulative displacements at pile head

    图  12   归一化累积位移

    Figure  12.   Normalized accumulative displacement

    图  13   循环单桩孔压传感器布置

    Figure  13.   Layout of pore pressure cells in cyclic loading

    图  14   单桩土体超孔压与循环次数关系

    Figure  14.   Variation of excess pore pressure with number of cycles

    图  15   峰值荷载下的桩身弯矩

    Figure  15.   Bending moments under the peak load

    图  16   D = 3.3 m循环p-y曲线

    Figure  16.   Cyclic p-y curves of monopile with D = 3.3 m

    图  17   D = 7.8 m循环p-y曲线

    Figure  17.   Cyclic p-y curves of monopile with D = 7.8 m

    图  18   循环p-y曲线的割线刚度

    Figure  18.   Secant stiffnesses of cyclic p-y curve

    图  19   D = 3.3 m单桩的归一化割线刚度与循环次数关系

    Figure  19.   Variation of normalized secant stiffness with number of cycles for monopile with D = 3.3 m

    图  20   D = 7.8 m单桩的归一化割线刚度与循环次数关系

    Figure  20.   Variation of normalized secant stiffness with number of cycles for monopile with D = 7.8 m

    图  21   归一化的极限土抗力与深度关系

    Figure  21.   Variation of normalized ultimate soil resisitance with depth

    表  1   单桩原型参数

    Table  1   Prototype parameters of monopiles

    桩径D/m 埋深Lp/m 加载偏心ec/m 相对刚度系数Kr 类别 备注
    3.3 37.0 23.0 0.012 半刚性 循环
    3.3 38.3 23.0 0.010 半刚性 静力
    7.8 38.3 23.0 0.299 刚性 静力
    7.8 37.5 23.0 0.336 刚性 循环
    下载: 导出CSV
  • [1]

    CAO G W, CHEN Z X, WANG C L, et al. Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations[J]. Ocean Engineering, 2020, 217: 108155. doi: 10.1016/j.oceaneng.2020.108155

    [2]

    DING X M, CHIAN S C, LIAN J, et al. Wind-wave combined effect on dynamic response of soil-monopile-OWT system considering cyclic hydro-mechanical clay behavior[J]. Computers and Geotechnics, 2023, 154: 105124. doi: 10.1016/j.compgeo.2022.105124

    [3] 朱姝. 双屈服面渐进硬化本构模型及海上风机桩基础累积变形规律[D]. 长沙: 湖南大学, 2022.

    ZHU Shu. Progressive Hardening Constitutive Model of Double Yield Surface and Cumulative Deformation Law of Offshore Wind Turbine Pile Foundation[D]. Changsha: Hunan University, 2022. (in Chinese)

    [4] 郭玉樹, 亚克慕斯·马丁, 阿布达雷赫曼·哈里. 用循环三轴试验分析海上风力发电机单桩基础侧向位移[J]. 岩土工程学报, 2009, 31(11): 1729-1734. doi: 10.3321/j.issn:1000-4548.2009.11.014

    KUO Y S, ACHMUS M, ABDEL-RAHMAN K. Estimation of lateral deformation of monopile foundations by use of cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1729-1734. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.11.014

    [5]

    BHATTACHARYA S, COX J A, LOMBARDI D, et al. Dynamics of offshore wind turbines supported on two foundations[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(2): 159-169. doi: 10.1680/geng.11.00015

    [6]

    NIKITAS G, VIMALAN N J, BHATTACHARYA S. An innovative cyclic loading device to study long term performance of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 154-160. doi: 10.1016/j.soildyn.2015.12.008

    [7]

    ZUO H R, BI K M, HAO H. Dynamic analyses of operating offshore wind turbines including soil-structure interaction[J]. Engineering Structures, 2018, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001

    [8]

    JEANJEAN P. Re-assessment of P-Y curves for soft clays from centrifuge testing and finite: element modeling[C]//Offshore Technology Conference, Houston, 2009.

    [9]

    GRANT R J. Movements around a Tunnel in Two-Layer Ground (BL)[D]. London: The City University, 1998.

    [10]

    MARTINS J P, CHANDLER R J An experimental study of skin friction around piles in clay[J]. Géotechnique, 2015, 32(2): 119-132.

    [11]

    OVESEN N K. The use of physical models in design: the scaling law relationships[C]//Proceedings of 7th European Conference on Soil Mechanics and Foundation Engineering, 1974, 4: 318-323.

    [12] 徐光明, 章卫民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-85. http://www.cgejournal.com/cn/article/id/9029

    XU Guangming, ZHANG Weimin. A study of size effect and boundary effect in centrifugal tests[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 80-85. (in Chinese) http://www.cgejournal.com/cn/article/id/9029

    [13]

    TRUONG P, LEHANE B M. Effects of pile shape and pile end condition on the lateral response of displacement piles in soft clay[J]. Géotechnique, 2018, 68(9): 794-804. doi: 10.1680/jgeot.16.P.291

    [14]

    MATLOCK. Correlations for design of laterally loaded pile in clay[C]//Proceedings of the Offshore Technology Conference. Houston, 1970.

    [15]

    POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering[C]//Foiindation Engineering @ Current Principles and Practices, ASCE, 1989: 1578-1606.

    [16]

    STEWART D P. A new site investigation tool for the centrifuge[C]//Proc Int Conf Centrifuge 91, Colorado, 1991.

    [17]

    GUPTA B K, BASU D. Applicability of Timoshenko, Euler–Bernoulli and rigid beam theories in analysis of laterally loaded monopiles and piles[J]. Géotechnique, 2018, 68(9): 772-785. doi: 10.1680/jgeot.16.P.244

    [18]

    TIMOSHENKO S P. Strength of materials, part II, advanced theory and problems[M]. 2nd ed. New York: D Van Nostrand, 1941.

    [19]

    YU H S, KHONG C, WANG J. A unified plasticity model for cyclic behaviour of clay and sand[J]. Mechanics Research Communications, 2007, 34(2): 97-114. doi: 10.1016/j.mechrescom.2006.06.010

    [20]

    LEVY N H, EINAV I, HULL T. Cyclic shakedown of piles subjected to two-dimensional lateral loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(10): 1339-1361. doi: 10.1002/nag.775

    [21]

    BLANDON C A, PRIESTLEY M J N. Equivalent viscous damping equations for direct displacement based design[J]. Journal of Earthquake Engineering, 2005, 9(S2): 257-278.

    [22]

    ACHMUS M, THIEKEN K, SAATHOFF J E, et al. Un- and reloading stiffness of monopile foundations in sand[J]. Applied Ocean Research, 2019, 84: 62-73. doi: 10.1016/j.apor.2019.01.001

    [23]

    CAO G W, DING X M, YIN Z Y, et al. A new soil reaction model for large-diameter monopiles in clay[J]. Computers and Geotechnics, 2021, 137: 104311.

    [24] 杨清杰. 近海风机大直径单桩水平承载特性离心模型试验分析[D]. 南京: 河海大学, 2019.

    YANG Qingjie. Analysis on the Lateral Bearing Response of Large-Diameter Monopiles for Offshore Wind Turbines Based on Centrifuge Model Test[D]. Nanjing: Hohai University, 2019. (in Chinese)

    [25] 高鲁超. 水泥土加固提升海上风电钢管桩水平承载性能研究[D]. 南京: 东南大学, 2021.

    GAO Luchao. Research on Enhancement Lateral Bearing Behaviour of Monopile for Offshore Wind Turbines in Cement-Soils[D]. Nanjing: Southeast University, 2021. (in Chinese)

    [26]

    DUNNAVANT T W, O'NEILL M W. Experimental p-y model for submerged, stiff clay[J]. Journal of Geotechnical Engineering, 1989, 115(1): 95-114.

    [27]

    CUÉLLAR P. Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behaviour under Short-Term and Long-Term Cyclic Loading[D]. Berlin: Technischen Universität, 2011.

  • 期刊类型引用(1)

    1. 叶帅华,辛亮亮. 基于桩-土界面剪切特性的单桩沉降和承载问题研究. 岩土力学. 2024(05): 1457-1471 . 百度学术

    其他类型引用(2)

图(21)  /  表(1)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  72
  • PDF下载量:  194
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-10-14
  • 网络出版日期:  2023-03-13

目录

/

返回文章
返回