• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂-黏土中结合水含量及渗透性的非等温耦合效应

黄远浩, 张志超, 肖杨, 李林航

黄远浩, 张志超, 肖杨, 李林航. 砂-黏土中结合水含量及渗透性的非等温耦合效应[J]. 岩土工程学报, 2024, 46(2): 375-384. DOI: 10.11779/CJGE20221153
引用本文: 黄远浩, 张志超, 肖杨, 李林航. 砂-黏土中结合水含量及渗透性的非等温耦合效应[J]. 岩土工程学报, 2024, 46(2): 375-384. DOI: 10.11779/CJGE20221153
HUANG Yuanhao, ZHANG Zhichao, XIAO Yang, LI Linhang. Non-isothermal coupled effects of bound water content and permeability in sand and clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 375-384. DOI: 10.11779/CJGE20221153
Citation: HUANG Yuanhao, ZHANG Zhichao, XIAO Yang, LI Linhang. Non-isothermal coupled effects of bound water content and permeability in sand and clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 375-384. DOI: 10.11779/CJGE20221153

砂-黏土中结合水含量及渗透性的非等温耦合效应  English Version

基金项目: 

国家自然科学基金项目 51978104

详细信息
    作者简介:

    黄远浩(1997—),硕士研究生,主要从事岩土力学方面的研究工作。E-mail: 17307972530@163.com

    通讯作者:

    张志超, zhangzhichaopt@163.com

  • 中图分类号: TU43

Non-isothermal coupled effects of bound water content and permeability in sand and clay

  • 摘要: 土体结合水性质、渗透性及温度之间的耦合关系,很大程度上决定了土体的温度-渗流-应力耦合行为。开展了非等温条件下饱和土的结合水含量及渗透性试验研究,以揭示温度变化对不同粒径和黏粒含量土体吸附结合水含量和渗透系数的影响机制。研究表明,温升可导致土体吸附结合水含量显著降低,且结合水含量-温度关系显著依赖于颗粒粒径和黏粒含量。由于土粒间的相互作用及结构性效应依赖于黏粒含量及温度,成型砂土/低含黏土和黏土/高含黏土样结合水含量分别不同程度地高于和低于散状土样。同时,温度升高将引起土体渗透系数不同程度的增大,这与升温下自由水运动黏度和吸附结合水含量的降低等因素密切相关,这些因素的作用程度又依赖于黏粒含量和土体孔隙率。在非等温条件下,忽略结合水效应将分别高估和低估低黏粒含量和高黏粒含量土体的渗透性随温度的变化。
    Abstract: The couplings among characteristics of bound water, permeability of soils and temperature largely determine the thermal-hydraulic-mechanical behavior of soils. To study the bound water content and the permeability of soils under non-isothermal conditions, the temperature-controlled laboratory measurements of the bound water content in saturated sand, clay and sand-clay mixtures, combined with the corresponding permeability tests, are carried out in this study based on the bulk density method. It is shown that temperature elevation leads to remarkable decreases of the bound water content, largely depending on the soil particle size and the clay content. The bound water contents under different temperatures measured for the packed soil samples with low and high clay contents are obviously higher and lower than those measured for the samples of dispersed soil particles, respectively, due to the interactions and structures among soil particles. The increases of soil permeability with the temperature elevation are also observed in the tests, which are highly related to the heating-induced and clay-content-dependent decreases of the free-water kinematic viscosity and the bound water content. The thermally induced changes of permeability can be overestimated for the soils with low clay contents and underestimated for those with high clay contents if ignoring the effects of bound water.
  • 图  1   温控土体结合水-渗透系数测试装置示意图

    Figure  1.   Temperature-controlled devices for combined tests on bound water content and coefficient of permeability

    图  2   散状砂土及黏土试样吸附结合水含量与温度的关系

    Figure  2.   Relationships between absorbed bound water content and temperature for dispersed samples of sand and clay

    图  3   散状硅砂及膨润土吸附结合水含量与颗粒粒径关系

    Figure  3.   Relationships between absorbed bound water content and particle size for dispersed samples of bentonite and siliceous sand

    图  4   含10%黏土砂土(a)及纯黏土(b)结合水含量随温度变化

    Figure  4.   Variations of bound water content with temperature for packed (a) sand samples with clay of 10% and (b) pure clays

    图  5   细砂-黏土混合土样结合水含量-温度关系

    Figure  5.   Relationships between bound water content and temperature for fine sand-clay mixtures

    图  6   不同温度下黏粒含量对细砂结合水含量的影响

    Figure  6.   Effects of clay content on bound water content of fine sands at different temperatures

    图  7   非等温条件下细砂渗透系数

    Figure  7.   Coefficients of permeability under non-isothermal conditions

    图  8   干密度对不同温度下含10%黏粒细砂渗透系数的影响

    Figure  8.   Effects of dry density on coefficient of permeability of fine sand with clay of 10% at different temperatures

    图  9   实测渗透系数与孔隙水等效运动黏度及孔隙率的关系

    Figure  9.   Relationship among coefficient of permeability and porosity of soils and equivalent kinematic viscosity of pore water

    表  1   试验用不同砂样粒径

    Table  1   Sand particles used in tests grouped according to size

    类别 粗砂 中砂 细砂 粉砂
    粒径/mm 0.6~1 0.355~0.5 0.15~0.2 0.038~ 0.15 (石英砂)
    0.038~ 0.018 (硅微粉)
    相对质量密度 2.609 2.602 2.616 2.660
    下载: 导出CSV

    表  2   试验工况汇总表

    Table  2   Details of testing conditions in this study

    编号 组分 温度/℃ 干密度/(g·cm-3)
    D1~30 粗砂至粉砂、黏土 10~60 散状
    P1~6 90%粗砂+10%黏土 10~60 1.53
    P7~12 90%中砂+10%黏土 10~60 1.53
    P13~18 90%粉砂+10%黏土 10~60 1.53
    PS1~6 100%细砂 10~60 1.53
    PS7~12 95%细砂+5%黏土 10~60 1.53
    PS13~18 90%细砂+10%黏土 10~60 1.53
    PS19~24 80%细砂+20%黏土 10~60 1.53
    PS25~30 100%黏土 10~60 1.53
    PS31~36 100%黏土 10~60 0.93
    PS37~42 90%细砂+10%黏土 10~60 1.4
    PS43~48 90%细砂+10%黏土 10~60 1.5
    PS49~54 90%细砂+10%黏土 10~60 1.6
    注:“D”代表散状土样吸附结合水试验,“P”代表成型土样吸附结合水试验,“PS”代表成型土吸附结合水+渗透性试验,干密度单位为g/cm3
    下载: 导出CSV

    表  3   试验温度下自由水和结合水密度

    Table  3   Densities of free and bound water used in tests 单位: g/cm3

    温度/℃ 10 20 30 40 50 60
    自由水 0.998 0.998 0.996 0.992 0.988 0.983
    结合水 1.308 1.3 1.291 1.281 1.272 1.261
    下载: 导出CSV
  • [1]

    STEPKOWSKA E T, PÉREZ-RODRı́GUEZ J L, MAQUEDA C, et al. Variability in water sorption and in particle thickness of standard smectites[J]. Applied Clay Science, 2004, 24(3/4): 185-199.

    [2]

    LIU K Q, JIN Z J, ZENG L B, et al. Determination of clay bound water in shales from NMR signals: the fractal theory[J]. Energy & Fuels, 2021, 35(22): 18406-18413.

    [3]

    DRNEVICH P V, TIDFORS M, SÄLLFORS G. Temperature effect on preconsolidation pressure[J]. Geotechnical Testing Journal, 1989, 12(1): 93. doi: 10.1520/GTJ10679J

    [4] 白冰, 苏钟琴, 杨海朋. 一种饱和粉质黏土的热固结特性试验研究[J]. 岩土力学, 2012, 33(1): 12-16, 23.

    BAI Bing, SU Zhongqin, YANG Haipeng. Experimental study of thermal consolidation of a saturated silty clay[J]. Rock and Soil Mechanics, 2012, 33(1): 12-16, 23. (in Chinese)

    [5]

    DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(2): 343-354. doi: 10.1139/t99-105

    [6]

    KONG G Q, FANG J C, LV Z X, et al. Effects of pile and soil properties on thermally induced mechanical responses of energy piles[J]. Computers and Geotechnics, 2023, 154: 105176. doi: 10.1016/j.compgeo.2022.105176

    [7] 孙军杰, 田文通, 刘琨, 等. 基于泊肃叶定律的土体渗透系数估算模型[J]. 岩石力学与工程学报, 2016, 35(1): 150-161.

    SUN Junjie, TIAN Wentong, LIU Kun, et al. Estimation model of soil permeability coefficient based on Poiseuille's law[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 150-161. (in Chinese)

    [8]

    HABIBAGAHI K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14-34.

    [9]

    PUPPALA A J, PUNTHUTAECHA K, VANAPALLI S K. Soil-water characteristic curves of stabilized expansive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 736-751. doi: 10.1061/(ASCE)1090-0241(2006)132:6(736)

    [10]

    MESRI G, OLSON R E. Mechanisms controlling the permeability of clays[J]. Clays and Clay Minerals, 1971, 19(3): 151-158. doi: 10.1346/CCMN.1971.0190303

    [11]

    KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations, 1995, 35(1): 147-162. doi: 10.3208/sandf1972.35.147

    [12]

    MORITZ L. Geotechnical Properties of Clay at Elevated Temperature[R]. Linkioping: Suwdish Geotechnical Institute, 1995.

    [13]

    MORIN R, SILVA A J. The effects of high pressure and high temperature on some physical properties of ocean sediments[J]. Journal of Geophysical Research, 1984, 89(B1): 511. doi: 10.1029/JB089iB01p00511

    [14] 肖树芳, 房后国, 王清. 软土中结合水与固结、蠕变行为[J]. 工程地质学报, 2014, 22(4): 531-535.

    XIAO Shufang, FANG Houguo, WANG Qing. The bound water, consolidation and creep behavior of soft soil[J]. Journal of Engineering Geology, 2014, 22(4): 531-535. (in Chinese)

    [15]

    CHEN J, ANANDARAJAH A, INYANG H. Pore fluid properties and compressibility of kaolinite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(9): 798-807. doi: 10.1061/(ASCE)1090-0241(2000)126:9(798)

    [16]

    LI S, WANG C M, ZHANG X W, et al. Classification and characterization of bound water in marine mucky silty clay[J]. Journal of Soils and Sediments, 2019, 19(5): 2509-2519. doi: 10.1007/s11368-019-02242-5

    [17]

    WANG H K, QIAN H, GAO Y Y, et al. Classification and physical characteristics of bound water in loess and its main clay minerals[J]. Engineering Geology, 2020, 265: 105394. doi: 10.1016/j.enggeo.2019.105394

    [18]

    MORTEZA ZEINALI S, ABDELAZIZ S L. Thermal consolidation theory[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(1): 04020147. doi: 10.1061/(ASCE)GT.1943-5606.0002423

    [19] 张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型[J]. 岩土工程学报, 2013, 35(7): 1297-1306. http://www.cgejournal.com/cn/article/id/15110

    ZHANG Zhichao, CHENG Xiaohui. Thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese) http://www.cgejournal.com/cn/article/id/15110

    [20] 王媛, 施斌, 高磊, 等. 黏性土渗透性温度效应实验研究[J]. 工程地质学报, 2010, 18(3): 351-356.

    WANG Yuan, SHI Bin, GAO Lei, et al. Laboratory tests for temperature effects of clayey soil permeability[J]. Journal of Engineering Geology, 2010, 18(3): 351-356. (in Chinese)

    [21]

    TENG Y, LI Z, ZHENG W, et al. Role of Temperature on Threshold Gradient and Permeability of non-Darcian Flow in Sand and Clay Mixtures[C]// Brussels: InterPore 2020, 2020.

    [22]

    GATMIRI B, DELAGE P. A formulation of fully coupled thermal-hydraulic-mechanical behaviour of saturated porous media—numerical approach[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(3): 199-225. doi: 10.1002/(SICI)1096-9853(199703)21:3<199::AID-NAG865>3.0.CO;2-M

    [23] 李生林. 土中结合水译文集[M]. 北京: 地质出版社, 1982.

    LI Shenglin. . The Translations of Soil Bound Water[M]. Beijing: Geological Publishing House, 1982. (in Chinese)

    [24]

    LEE D J, LEE S F. Measurement of bound water content in sludge: the use of differential scanning calorimetry (DSC)[J]. Journal of Chemical Technology AND Biotechnology, 1995, 62(4): 359-365. doi: 10.1002/jctb.280620408

    [25]

    LI Y L, WANG T H, SU L J. Determination of bound water content of loess soils by isothermal adsorption and thermogravimetric analysis[J]. Soil Science, 2015, 180(3): 90-96. doi: 10.1097/SS.0000000000000121

    [26] 宋功保, 张建洪, 郭颖, 等. 海泡石中水的红外光谱及其结构稳定性的指示作用[J]. 岩石矿物学杂志, 1999, 18(1): 80-86.

    SONG Gongbao, ZHANG Jianhong, GUO Ying, et al. Infrared spectrum of water in sepiolite and its role of indicating structural stability[J]. Acta Petrrologica et Mineralogica, 1999, 18(1): 80-86. (in Chinese)

    [27] 胡湘锋. 黏土中水的形态对其工程性质的影响研究[D]. 广州: 华南理工大学, 2017.

    HU Xiangfeng. A Study on the Influence of Water's State in Clay on Its Engineering Properties[D]. Guangzhou: South China University of Technology, 2017. (in Chinese)

    [28]

    De WIT C T, ARENS P L, Moisture content and density of some clay minerals and some remarks on the hydration pattern of clay[C]//Transactions of the International Congress of Soil Science. Amsterdam, 1950.

    [29]

    MACKENZIE R C. Density of water sorbed on montmorillonite[J]. Nature, 1958, 181(4605): 334.

    [30] 焦文灿. 广西北部湾海积软土结合水特性及蠕变释水机制研究[D]. 南宁: 广西大学, 2021.

    JIAO Wencan. Reasaerch on the Characterristics of Bound Water and Wate Release Mechansim of Creep of Marine Soft Soil in the Bbeibu Gulf of Guangxi[D]. Nanning: Guangxi University, 2021. (in Chinese)

    [31]

    HIEBL M, MAKSYMIW R. Anomalous temperature dependence of the thermal expansion of proteins[J]. Biopolymers, 1991, 31(2): 161-167. doi: 10.1002/bip.360310204

    [32]

    KATOPODES N D. Free-Surface Flow: Environmental Fluid Mechanics[M]. Oxford: Butterworth-Heinemann, 2019.

图(9)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回