• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究

柴少峰, 王兰民, 王平, 郭海涛, 夏晓雨, 车高凤, 王会娟

柴少峰, 王兰民, 王平, 郭海涛, 夏晓雨, 车高凤, 王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究[J]. 岩土工程学报, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123
引用本文: 柴少峰, 王兰民, 王平, 郭海涛, 夏晓雨, 车高凤, 王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究[J]. 岩土工程学报, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123
CHAI Shaofeng, WANG Lanmin, WANG Ping, GUO Haitao, XIA Xiaoyu, CHE Gaofeng, WANG Huijuan. Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123
Citation: CHAI Shaofeng, WANG Lanmin, WANG Ping, GUO Haitao, XIA Xiaoyu, CHE Gaofeng, WANG Huijuan. Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123

石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究  English Version

基金项目: 

国家自然科学基金项目 U1939209

中国地震局地震科技星火计划资助项目 XH20058Y

甘肃省科技计划项目 21JR7RA788

详细信息
    作者简介:

    柴少峰(1986—),男,博士研究生,副研究员,主要从事岩土工程与地震模拟振动台模型试验方面的研究。E-mail:chaishaofeng520@163.com

    通讯作者:

    王兰民, E-mail:wanglm@gsdzj.gov.cn

  • 中图分类号: TU435

Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan

  • 摘要: 在野外调查、勘探与室内试验的基础上,通过振动台模型试验对1920年海原地震宁夏石碑塬低角度液化滑移启动机理、地貌形成特征、失稳过程及其滑动机制进行研究。结果表明:石碑塬低角度液化滑移是1920年海源地震在特殊地层结构及高烈度地震动共同作用下产生的饱和砂质黄土地层的液化滑移;液化滑移过程包括液化启动、抛射加速、滑移堆积等3个阶段,液化滑移具有高速和长距离流动特性;试验结果表明液化启动是大规模滑移的触发机制;高峰值的地震加速度放大及惯性抛射是液化滑移高速远程的驱动机制;特殊的下部隔水层和中部饱和砂质黄土层的地层结构是大规模低角度滑移形成的物理基础;液化程度的差异造成不同层位土体的运移速度差及拉张推挤作用是形成峰谷相间波浪起伏地貌的原因。研究结果对强震作用下低角度黄土地层地震液化滑移灾害机理的认知与该类滑坡灾害防治技术方法的创新具有重要的参考验证价值。
    Abstract: Based on the field investigation, exploration and laboratory tests, the initiation mechanism of low-angle liquefaction sliding, geomorphologic formation characteristics, instability process and sliding mechanism of Shibeiyuan in Ningxia during the 1920 Haiyuan earthquake are studied by shaking table model tests. The results show that the low-angle liquefaction sliding of Shibeiyuan is the liquefaction one of the saturated sandy loess formation caused by the special stratum structure and high-intensity ground motion of the 1920 Haiyuan earthquake. The liquefaction sliding process includes three stages: initiation of liquefaction stage, ejected acceleration stage, flow slipping and accumulation stage. Finally, the liquefaction sliding is characterized by high-speed and long-distance flows. The results show that the initiation of liquefaction is the trigger mechanism of large-scale sliding. The seismic acceleration amplification at the peak value and the inertial ejection are the driving mechanism of liquefaction sliding at high speed and long distance. The special stratigraphic structure of the lower permeability aquifer at the bottom and the saturated sandy loess layer in the middle is the physical basis for the formation of large-scale liquefaction sliding with low angle. The difference of liquefied degree leads to that of transport velocity of soils in different layers and the stretching and pushing action, which is the reason for the wavy geomorphology with peaks and valleys. The research results have important reference value for the recognition of earthquake liquefaction and sliding disaster mechanism of low-angle loess stratum under strong earthquakes and the innovation of landslide prevention and control technology.
  • 致谢: 感谢中国地震局兰州地震研究所王谦副研究员、钟秀梅副研究员以及兰州大学马为功博士为本试验给予的支持和帮助。
  • 图  1   石碑塬液化区分布

    Figure  1.   Distribution of liquefaction zone in Shibeiyuan

    图  2   南滑移区现存地貌、钻孔及探槽位置

    Figure  2.   Existing landforms, boreholes and trial trench in south sliding zone

    图  3   滑移区地貌及后壁特征

    Figure  3.   Geomorphology and backwall characteristics of sliding zone

    图  4   石碑塬滑移区地层剖面

    Figure  4.   Profile of strata in sliding zone of Shibeiyuan

    图  5   石碑塬原始地层剖面简化模型

    Figure  5.   Simplified model for profile of original strata in Shibeiyuan

    图  6   模型尺寸及模型安装示意图

    Figure  6.   Schematic diagram of model size and installation

    图  7   传感器布设图

    Figure  7.   Layout of sensors

    图  8   汶川卧龙地震波波形

    Figure  8.   Waveform of Wenchuan Wolong seismic waves

    图  9   100~300 gal加振后模型水位线、液化及变形

    Figure  9.   Water levels, liquefaction and deformations of model after vibration of 100~300 gal

    图  10   400~600 gal加振后模型水位线、局部液化、运移及变形

    Figure  10.   Water levels, local liquefaction, migration and deformations of model after vibration of 400~600 gal

    图  11   800 gal加振后模型水位线、液化层运移及变形特征

    Figure  11.   Water levels, migration and deformation characteristics of liquefied layer after vibration of 800 gal

    图  12   1200 gal加振后模型水位线、液化层整体运移及变形破坏特征

    Figure  12.   Water levels, migration and deformations and failure characteristics of liquefied layer after vibration of 1200 gal

    图  13   模型液化滑移后特征对比

    Figure  13.   Comparison of characteristics of model after liquefaction sliding failure

    图  14   初始液化阶段模型坡体内加速度和孔隙水压力发展趋势

    Figure  14.   Development trend of acceleration and pore-water pressure of model slope at initial liquefaction stage

    图  15   液化滑移启动阶段模型坡体内加速度和孔隙水压力发展趋势

    Figure  15.   Development trend of acceleration and pore-water pressure of model slope at start liquefaction slip stage

    图  16   1200 gal加载后模型液化流滑及破坏后特征

    Figure  16.   Sliding and failure characteristics of liquefaction flow of model after loading of 1200 gal

    表  1   石碑塬液化地层及其液化判别结果

    Table  1   Distribution of liquefied strata and discriminant results of Shibeiyuan

    地层类型 土层厚度/m 土层描述 剪切波速/(m·s-1) 取样深度/m 液化临界剪切波速/(m·s-1)(液化判别结果[6])
    上部黄土层 12~16 黄褐色、次密、较均匀,岩心成短柱状 151 6.5 151
    第一古土壤层 1.4~2.0 红褐色、硬塑状、中密、具层理 211 10.5 68(否) 94(否) 135(否)
    砂质黄土层 5.1~11.7 黄褐色、中湿、土层较均匀 188 15 98(否) 136(否) 196(是)
    第二古土壤层 0.9~6.0 红褐色、硬塑、中密、较湿 244 35.5 118(否) 163(否) 236(否)
    Q2古土壤层 11.4~21.2 褐色、软塑、稍密、具缩孔现象 272 40 122(否) 169(否) 244(否)
    下载: 导出CSV

    表  2   不同土层试样的基本物性指标及颗粒组成

    Table  2   Basic physical property indexes and particle composition of samples from different strata

    地层土样 取样深度/m 干密度/(g·cm-3) 含水率w/% 孔隙比 饱和度Sr/% 颗粒组成/%
    黏粒 粉粒 砂粒
    上部非饱和黄土层(Q3、Q4 6.5 1.35 5.51 1.12 13.36 13.15 77.99 8.86
    第一古土壤层(Q3 13.5 1.68 11.14 0.79 38.08 16.97 81.01 2.02
    饱和砂质黄土层(Q3 16.5 1.65 27.69 1.09 75.40 12.20 59.66 28.14
    Q2古土壤层(Q2 35.5 1.72 26.82 1.00 72.82 13.22 66.21 20.57
    下载: 导出CSV

    表  3   试验加载序列

    Table  3   Loading sequences for tests

    序号 加载波形 激振方向 烈度 设计输入振幅/gal 实际加载幅值/gal
    1 正弦扫频 水平(x 50
    2 汶川地震记录波 水平(x Ⅶ度 100 95
    3 汶川地震记录波 水平(x Ⅷ度 200 185
    4 汶川地震记录波 水平(x Ⅷ度 300 290
    5 汶川地震记录波 水平(x Ⅸ度 400 385
    6 汶川地震记录波 水平(x Ⅸ度 600 626
    7 汶川地震记录波 水平(x Ⅸ度 800 825
    8 正弦扫频 水平(x 50
    9 汶川地震记录波 水平(x Ⅹ度 1200 1154
    下载: 导出CSV
  • [1] 白铭学, 张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察, 1990, 18(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm

    BAI Mingxue, ZHANG Sumin. Landslide induced by liquefaction of loessial soil during earthquake of high intensity[J]. Geotechnical Investigation and Surveying, 1990, 18(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm

    [2] 王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003.

    WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)

    [3] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001

    [4] 王谦, 王峻, 王兰民, 等. 石碑塬饱和黄土地震液化机制探讨[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4168-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm

    WANG Qian, WANG Jun, WANG Lanmin, et al. Discussion on mechanism of seismic liquefaction of saturation loess in Shibei tableland, Guyuan city[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4168-4173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm

    [5] 马星宇, 王兰民, 王谦, 等. 饱和黄土液化流动性试验研究[J]. 岩土工程学报, 2021, 43(增刊1): 161-165. doi: 10.11779/CJGE2021S1029

    MA Xingyu, WANG Lanmin, WANG Qian, et al. Experimental study on liquefaction fluidity of saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 161-165. (in Chinese) doi: 10.11779/CJGE2021S1029

    [6] 张晓超, 黄润秋, 许模, 等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学, 2014, 35(3): 801-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm

    ZHANG Xiaochao, HUANG Runqiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm

    [7] 马星宇, 王兰民, 钟秀梅, 等. 地震诱发石碑塬黄土地层液化滑移距离研究[J]. 地震工程学报, 2020, 42(6): 1674-1682. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202006043.htm

    MA Xingyu, WANG Lanmin, ZHONG Xiumei, et al. Slippage distance of loess deposit triggered by earthquake-induced liquefaction in Shibeiyuan area[J]. China Earthquake Engineering Journal, 2020, 42(6): 1674-1682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202006043.htm

    [8] 张晓超. 地震诱发石碑塬低角度黄土滑坡形成机理的试验研究[D]. 成都: 成都理工大学, 2015.

    ZHANG Xiaochao. Experimental Stduy on Mechanism of Shibeiyuan Loess Landslide Triggered by Earthquake[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)

    [9] 高九龙. 黄土低角度边坡液化滑移机理试验研究: 以石碑塬滑坡为例[D]. 西安: 西北大学, 2021.

    GAO Jiulong. Experimental Study on Liquefaction Slip Mechanism of Loess Low-Angle Slope[D]. Xi'an: Northwest University, 2021. (in Chinese)

    [10] 刘魁. 固原市原州区地震诱发黄土滑坡形成机理研究[D]. 西安: 长安大学, 2012.

    LIU Kui. Study on the Mechanism of Loess Landslide Induced by Earthquake in Yuanzhou District Guyuan City[D]. Xi'an: Changan University, 2012. (in Chinese)

    [11] 王家鼎, 白铭学, 肖树芳. 强震作用下低角度黄土斜坡滑移的复合机理研究[J]. 岩土工程学报, 2001, 23(4): 445-449. http://www.cgejournal.com/cn/article/id/10759

    WANG Jiading, BAI Mingxue, XIAO Shufang. A study on compound mechanism of earthquake-related sliding displacements on gently inclined loess slope[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 445-449. (in Chinese) http://www.cgejournal.com/cn/article/id/10759

    [12] 白铭学, 王增光. 宁夏黄土高原区低角度滑移研究报告[R]. 宁夏: 宁夏回族自治区地震局, 1987.

    BAI Mingxue, WANG Zengguang. Study on Low Angle Slip in Loess Plateau of Ningxia[R]. Ningxia: Earthquake Agency of Ningxia Hui Autonomous Region, 1987. (in Chinese)

    [13] 郭海涛, 许世阳, 蒲小武, 等. 海原地震石碑塬液化滑移地表特征形成机制探讨[J]. 地震工程学报, 2020, 42(5): 1159-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202005016.htm

    GUO Haitao, XU Shiyang, PU Xiaowu, et al. Formation mechanism of surface characteristics of liquefaction-triggered sliding flow in Haiyuan earthquake Shibei tableland[J]. China Earthquake Engineering Journal, 2020, 42(5): 1159-1164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202005016.htm

    [14] 柴少峰, 王平, 郭海涛, 等. 大型振动台试验土质边坡模型材料相似性及评价[J]. 地震工程学报, 2019, 41(5): 1308-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201905027.htm

    CHAI Shaofeng, WANG Ping, GUO Haitao, et al. Model material similarity and associated evaluation for soil slopes in a large-scale shaking table test[J]. China Earthquake Engineering Journal, 2019, 41(5): 1308-1315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201905027.htm

  • 期刊类型引用(2)

    1. 牛向东,侯克鹏,孙华芬. 断层穿过上覆围岩巷道破坏力学机理及控制技术研究. 矿业研究与开发. 2023(04): 60-67 . 百度学术
    2. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看

    其他类型引用(7)

图(16)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-09-12
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回