• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑竖向地震作用的大型地下框架结构易损性分析

邱大鹏, 陈健云, 王文明, 曹翔宇

邱大鹏, 陈健云, 王文明, 曹翔宇. 考虑竖向地震作用的大型地下框架结构易损性分析[J]. 岩土工程学报, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
引用本文: 邱大鹏, 陈健云, 王文明, 曹翔宇. 考虑竖向地震作用的大型地下框架结构易损性分析[J]. 岩土工程学报, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
Citation: QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053

考虑竖向地震作用的大型地下框架结构易损性分析  English Version

基金项目: 

国家重点研发计划项目 2020YFC1511905

国家自然科学基金项目 52208397

国家自然科学基金项目 51908340

山东省自然科学基金青年基金项目 ZR2021QE126

山东建筑大学博士科研基金项目 X20026Z0101

详细信息
    作者简介:

    邱大鹏(1992—),男,博士,副教授,主要从事地下结构抗震性能与韧性提升研究。E-mail: qiudapeng20@sdjzu.edu.cn

    通讯作者:

    王文明, E-mail: wangwenmingmr@sdjzu.edu.cn

  • 中图分类号: TU43

Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes

  • 摘要: 基于增量动力分析(IDA)方法,探究了单一水平向地震及水平向与竖向地震联合作用下大型地下框架结构地震响应的IDA曲线,揭示了竖向地震对结构不同危险位置响应的影响规律;针对结构的层间水平变形与弯曲变形,提出分别选择层间位移角与层间梁柱转角作为性能评价指标,阐明了竖向地震对结构抗震性能的影响机理,得到了单向和双向地震分别作用下结构的地震易损性曲线。研究表明:竖向地震作用对结构基于层间位移角的地震易损性影响较小,但会增大外侧结构的局部弯曲变形并降低结构基于弯曲变形的抗震性能,基于层间梁柱转角的地震易损性明显提高,建议综合层间位移角与层间梁柱转角对双向地震动作用下大型地下结构的地震易损性进行全面地评估。
    Abstract: The increase dynamic analysis (IDA) curves of seismic responses of the underground large-scale frame structure (ULSFS) are investigated during the single horizontal earthquakes and horizontal-vertical earthquakes, respectively. The influence mechanism of vertical earthquakes on the seismic responses of different vulnerable positions is revealed. Aiming at the interlayer drift deformation and flexural deformation in the ULSFS, the interlayer drift ratio (IDR) and interlayer rotation angle (IRA) are employed as the seismic performance evaluation indexes. Therefore, the influence mechanism of vertical earthquakes on structural seismic performance is further revealed. The seismic fragility curves of the ULSFS are achieved during horizontal earthquakes and horizontal-vertical earthquakes, respectively. The results show that the vertical earthquakes have small seismic influences on the seismic fragility of the ULSFS based on the IDR. However, the vertical earthquakes enlarge the local flexural deformation of the ULSFS and decrease the seismic performance of the ULSFS based on the IRA. The seismic fragility considerably increases after considering the vertical seismic effects. The IDR aiming at the horizontal drift deformation and the IRA aiming at the interlayer flexural deformation are advised to be employed to assess the seismic fragility of large underground structures during both horizontal and vertical earthquakes comprehensively.
  • 图  1   ULSFS的构造及框架柱配筋示意图

    Figure  1.   Structural diagram of ULSFS and reinforcements of framework columns

    图  2   土-结构有限元模型

    Figure  2.   Finite element models for soil and structure

    图  3   所选地震动加速度反应谱

    Figure  3.   Acceleration response spectra of ground motions

    图  4   实测地震动与模拟地震动

    Figure  4.   Recorded and simulated ground motions

    图  5   水平向地震作用下Ⅱ类场地中ULSFS的IDA曲线

    Figure  5.   IDA curves of ULSFS during horizontal earthquakes in site Ⅱ

    图  6   水平向与竖向地震作用下Ⅱ类场地中ULSFS的IDA曲线

    Figure  6.   IDA curves of ULSFS during horizontal and vertical earthquakes in site Ⅱ

    图  7   结构抗震性能曲线及“最远点法”示意图

    Figure  7.   Diagram of seismic performance curve and farthest point method

    图  8   ULSFS抗震性能曲线

    Figure  8.   Seismic performance curves of ULSFS

    图  9   水平向地震作用下Ⅱ类场地条件中ULSFS的易损性曲线

    Figure  9.   Fragility curves of ULSFS during horizontal earthquakes in site Ⅱ

    图  10   双向地震作用下Ⅱ类场地条件中ULSFS的易损性曲线

    Figure  10.   Fragility curves of ULSFS during bi-directional earthquakes in site Ⅱ

    表  1   ULSFS本构与材料属性

    Table  1   Material constitutive models of ULSFS

    材料 混凝土 钢筋
    密度ρc1/(kg·m-3) 弹性模量Es1/GPa 泊松比 扩张角ψc/(°) 偏心率η Kt1 拉伸屈服强度σt1/MPa 压缩屈服强度σc1/MPa 密度ρr/(kg·m-3) 弹性模量Esr/GPa 屈服强度σr/MPa
    数值 2400 32.5 0.20 15 0.1 0.666 3 30 7800 200 400
    下载: 导出CSV

    表  2   实际场地各土层参数

    Table  2   Parameters of soil layers in actual site

    土层 土壤类型 埋深/m 密度/(kg·m-3) 泊松比 内摩擦角/(°) 黏聚力/kPa 剪切波速/(m·s-1)
    1 回填土 0~4 1870 0.33 20 20 181
    2 粉质黏土 4~12 1900 0.28 18 40 193
    3 粉质黏土 12~20 1900 0.28 20 25 405
    4 粉质黏土 20~34 1850 0.30 20 10 247
    5 粉质黏土 34~42 1850 0.28 20 20 271
    6 黏土 42~54 1900 0.25 30 30 303
    7 砾石 54~74 1950 0.20 20 1 427
    下载: 导出CSV

    表  3   所选地震动信息

    Table  3   Data of selected ground motions

    编号 地震动名称 震级Mw vs20/
    (m·s-1)
    Rrup/km 编号 地震动名称 震级Mw vs20/(m·s-1) Rrup/km
    GM-1 "Imperial Valley-02" 6.95 213.44 6.09 GM-11 "San Fernando" 6.61 385.69 112.52
    GM-2 "Northwest Calif-02" 6.6 219.31 91.22 GM-12 "Managua_Nicaragua-01" 6.24 288.77 4.06
    GM-3 "Kern County" 7.36 316.46 117.75 GM-13 "Loma Prieta" 6.93 304.08 67.52
    GM-4 "Kern County" 7.36 385.43 38.89 GM-14 "Loma Prieta" 6.93 331.21 50.99
    GM-5 "Northern Calif-03" 6.5 219.31 27.02 GM-15 "Loma Prieta" 6.93 333.85 22.68
    GM-6 "Parkfield" 6.19 289.56 9.58 GM-16 "Northridge-01" 6.69 269.29 68.62
    GM-7 "Borrego Mtn" 6.63 316.46 222.42 GM-17 "Northridge-01" 6.69 301.23 41.17
    GM-8 "San Fernando" 6.61 280.56 55.20 GM-18 "Kobe_Japan" 6.90 312.14 0.96
    GM-9 "San Fernando" 6.61 316.46 22.77 GM-19 "Chi-Chi_Taiwan-05" 6.20 330.55 54.76
    GM-10 "San Fernando" 6.61 303.79 193.91 GM-20 "Chi-Chi_Taiwan-06" 6.30 297.86 61.03
    下载: 导出CSV

    表  4   ULSFS抗震性能评价指标及状态阈值

    Table  4   Seismic performance evaluation indexes and thresholds of ULSFS

    项目 性能指标 基本完好 轻微破坏 中等破坏 严重破坏 塌毁
    未考虑竖向地震 IDR-本文 θ<0.10% 0.10%θ<0.15% 0.15%θ<0.40% 0.40%θ<0.75% 0.75%θ
    IDR-文章[4] θ<0.12% 0.12%<θ<0.25% 0.25%θ<0.40% 0.40%θ<0.6% 0.60%θ
    IDR-文章[9] θ<0.08% 0.08%<θ<0.29% 0.29%θ<0.60% 0.60%θ<0.95% 0.95%θ
    IDR-文章[10] θ<0.12% 0.12%θ<0.32% 0.32%θ<0.73% 0.73%θ<1.29% 1.29%θ
    IRA-本文 θ<0.05% 0.05%θ<0.125% 0.125%θ<0.40% 0.40%θ<0.75% 0.75%θ
    考虑竖向地震动 IDR-本文 θ<0.08% 0.08%θ<0.12% 0.12%θ<0.33% 0.33%θ<0.65% 0.65%θ
    IDR-文章[8] θ<0.05% 0.05%θ<0.21% 0.21%θ<0.46% 0.46%θ<0.72% 0.72%θ
    IRA-本文 θ<0.04% 0.04%θ<0.1% 0.1%θ<0.33% 0.33%θ<0.63% 0.63%θ
    下载: 导出CSV

    表  5   地震强度指标与结构性能评价指标平均标准偏差

    Table  5   βD between IM and ud

    βD PGA PBA PGV
    IDR 0.35 0.41 0.38
    IRA 0.39 0.36 0.43
    下载: 导出CSV

    表  6   Ⅱ场地条件下ULSFS地震失效概率50%所对应PGA

    Table  6   PGAs corresponding to failure probability of ULSFS with value of 50% in site Ⅱ

    失效概率(50%) 单向地震-IDR 单向地震-IRA 双向地震-IDR 双向地震-IRA
    正常使用(S1) 0.11g 0.09g 0.13g 0.08g
    立即使用(S2) 0.17g 0.18g 0.17g 0.15g
    生命安全(S3) 0.40g 0.42g 0.38g 0.33g
    防止倒塌(S4) 0.70g 0.67g 0.65g 0.52g
    下载: 导出CSV
  • [1]

    HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293. doi: 10.1016/S0886-7798(01)00051-7

    [2]

    PENZIEN J. Seismically induced racking of tunnel linings[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 683-691.

    [3] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    DU Xiuli, MA Chao, LU Dechun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    [4] 庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138. doi: 10.11779/CJGE201901014

    ZHUANG Haiyang, REN Jiawei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese) doi: 10.11779/CJGE201901014

    [5] 马超. 地铁车站结构地震塌毁过程模拟及破坏机理分析[D]. 北京: 北京工业大学, 2017.

    MA Chao. Collapse Procedure Simulation and Failure Mechanism Analysis on subway Stations under Seismic Loads[D]. Beijing: Beijing University of Technology, 2017. (in Chinese)

    [6]

    LI W T, CHEN Q J. Seismic damage evaluation of an entire underground subway system in dense urban areas by 3D FE simulation[J]. Tunnelling and Underground Space Technology, 2020, 99: 103351. doi: 10.1016/j.tust.2020.103351

    [7] 许成顺, 李洋, 杜修力, 等. 上覆土竖向惯性力对浅埋地下框架结构地震损伤反应影响离心机振动台模型试验研究[J]. 土木工程学报, 2019, 52(3): 100-110, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903010.htm

    XU Chengshun, LI Yang, DU Xiuli, et al. Dynamic centrifuge tests for influence of vertical inertia force of overburden soil on earthquake damage response of shallow-buried underground frame structures[J]. China Civil Engineering Journal, 2019, 52(3): 100-110, 119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903010.htm

    [8]

    DU X L, JIANG J W, EL NAGGAR M H, et al. Interstory drift ratio associated with performance objectives for shallow-buried multistory and span subway stations in inhomogeneous soil profiles[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 655-672.

    [9] 杜修力, 蒋家卫, 许紫刚, 等. 浅埋矩形框架地铁车站结构抗震性能指标标定研究[J]. 土木工程学报, 2019, 52(10): 111-119, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm

    DU Xiuli, JIANG Jiawei, XU Zigang, et al. Study on quantification of seismic performance index for rectangular frame subway station structure[J]. China Civil Engineering Journal, 2019, 52(10): 111-119, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm

    [10]

    ZHONG Z L, SHEN Y Y, ZHAO M, et al. Seismic fragility assessment of the Daikai subway station in layered soil[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106044. doi: 10.1016/j.soildyn.2020.106044

    [11]

    ZHUANG H Y, YANG J, CHEN S, et al. Statistical numerical method for determining seismic performance and fragility of shallow-buried underground structure[J]. Tunnelling and Underground Space Technology, 2021, 116: 104090. doi: 10.1016/j.tust.2021.104090

    [12]

    HE Z M, CHEN Q J. Vertical seismic effect on the seismic fragility of large-space underground structures[J]. Advances in Civil Engineering, 2019, 2019: 1-17.

    [13] 刘晶波, 兰兴欢, 谭辉. 地下与地上钢筋混凝土矩形结构抗震性能对比研究[J]. 地震工程学报, 2019, 41(2): 271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201902001.htm

    LIU Jingbo, LAN Xinghuan, TAN Hui. Comparative study on the seismic performances of underground vs. above-ground reinforced concrete structures with rectangular cross sections[J]. China Earthquake Engineering Journal, 2019, 41(2): 271-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201902001.htm

    [14]

    QIU D P, CHEN J Y, XU Q. 3-D numerical analysis on seismic responses of the underground large scale frame structure under near-fault ground motions[J]. Tunnelling and Underground Space Technology, 2019, 91: 103020.

    [15]

    LUDWIG W. ABAQUS User' s Guide, Version 6.14[R]. Rhode Island: Abaqus Inc., 2014.

    [16] 建筑抗震设计规范: GB50011—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Code for Seismic Design of Buildings: GB50011—2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

    [17] 钟紫蓝, 申轶尧, 郝亚茹, 等. 基于IDA方法的两层三跨地铁地下结构地震易损性分析[J]. 岩土工程学报, 2020, 42(5): 916-924. doi: 10.11779/CJGE202005014

    ZHONG Zilan, SHEN Yiyao, HAO Yaru, et al. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. (in Chinese) doi: 10.11779/CJGE202005014

    [18] 廖振鹏, 刘晶波. 离散网格中的弹性波动(Ⅰ)[J]. 地震工程与工程振动, 1986, 6(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199002000.htm

    LIAO Zhenpeng, LIU Jingbo. Elastic wave motion in discrete grids[J]. Earthquake Engineering and Engineering Vibration, 1986, 6(2): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199002000.htm

    [19]

    QIU D P, CHEN J Y, XU Q. Improved pushover analysis for underground large-scale frame structures based on structural dynamic responses[J]. Tunnelling and Underground Space Technology, 2020, 103: 103405.

    [20]

    Pacific Earthquake Engineering Research Center. PEER strong motion database[R]. Berkeley: California Berkeley, 2005.

    [21] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703005.htm

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703005.htm

    [22]

    QIU D P, CHEN J Y, FU H Q. Research on the comprehensive evaluating index of seismic performance of underground large-scale frame structures[J]. Structures, 2022, 37: 645-660.

    [23]

    CHEN Z Y, FAN Y, JIA P. Influence of buried depth on seismic capacity of underground subway stations through performance-based evaluation[J]. Structures, 2021, 32: 194-203.

    [24]

    CORNELL C A, JALAYER F, HAMBURGER R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4): 526-533.

    [25]

    NIBS. HAZUS-MH: Technical Manuals[S]. 2004.

图(10)  /  表(6)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  74
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回