• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非对称破坏模式下临坡地基的Meyerhof承载力新解

晏青, 赵均海, 张常光

晏青, 赵均海, 张常光. 非对称破坏模式下临坡地基的Meyerhof承载力新解[J]. 岩土工程学报, 2024, 46(5): 1077-1084. DOI: 10.11779/CJGE20221051
引用本文: 晏青, 赵均海, 张常光. 非对称破坏模式下临坡地基的Meyerhof承载力新解[J]. 岩土工程学报, 2024, 46(5): 1077-1084. DOI: 10.11779/CJGE20221051
YAN Qing, ZHAO Junhai, ZHANG Changguang. New solutions of Meyerhof's bearing capacity for foundations near slopes under asymmetric failure modes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1077-1084. DOI: 10.11779/CJGE20221051
Citation: YAN Qing, ZHAO Junhai, ZHANG Changguang. New solutions of Meyerhof's bearing capacity for foundations near slopes under asymmetric failure modes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1077-1084. DOI: 10.11779/CJGE20221051

非对称破坏模式下临坡地基的Meyerhof承载力新解  English Version

基金项目: 

地质灾害防治与地质环境保护国家重点实验室开放基金项目 SKLGP2020K022

陕西省自然科学基金项目 2021GM-170

详细信息
    作者简介:

    晏青(1992—),女,河南信阳人,博士,讲师,从事岩土工程强度理论与应用研究。E-mail: yanqing1210@126.com

    通讯作者:

    张常光,E-mail: zcg1016@163.com

  • 中图分类号: TU470

New solutions of Meyerhof's bearing capacity for foundations near slopes under asymmetric failure modes

  • 摘要: 利用统一强度理论的平面应变强度方程,综合考虑中间主应力、基础至坡肩的水平距离、边坡高度和基底粗糙情况等因素,提出临坡地基坡面非对称破坏模式和坡底非对称破坏模式,继而建立条形基础下临坡地基新的Meyerhof承载力解答,给出具体应用步骤并开展理论退化分析与对比验证。研究表明:考虑坡后土体强度贡献所提出的非对称破坏模式更符合临坡地基的实际破坏形态;所得临坡地基Meyerhof承载力解答与文献模型试验和数值模拟均吻合良好;中间主应力可明显提高临坡地基的承载力;临坡地基承载力随边坡高度增加先减小后恒定。研究结果合理反映了土体强度的中间主应力效应、破坏模式的非对称性以及基础旁侧土体强度等工程实际情况,对临坡地基优化设计具有一定的理论指导意义。
    Abstract: The asymmetric failure modes involving the slope face failure and the below-toe failure are proposed, and then new solutions of Meyerhof's bearing capacity for strip foundations near slopes are presented by adopting the shear strength equation of unified strength theory under plane strain conditions. The combined effects of the intermediate principal stress, the horizontal distance of foundation from the slope shoulder, the slope height and the base roughness are taken into account. The specific application steps of the obtained solutions are provided, and theoretical degradation analysis and comparison verifications are conducted. It is found herein that the proposed asymmetrical failure mode considering the contribution of soil strength behind the slope is more consistent with the actual failure behavior of foundations near slopes. The obtained solutions of Meyerhof's bearing capacity for foundations near slopes are in good agreement with those of the model tests and numerical simulations in the literature. The intermediate principal stress has a marked improvement effect on the bearing capacity of foundations near slopes. The bearing capacity of foundations near slopes first decreases and then remains unchanged with the increase of the slope height. This study accounts for practical engineering conditions, such as the intermediate principal stress effect of soil strength, the asymmetry of failure modes and soil strength at foundation lateral side, which is of theoretical guiding significance to the optimal design of foundations near slopes.
  • 图  1   非对称破坏模式下的临坡地基

    Figure  1.   Foundations near slopes under asymmetric failure modes

    图  2   分析隔离体Ⅳ的受力

    Figure  2.   Force analysis of isolator Ⅳ

    图  3   莫尔圆-BD面极限状态

    Figure  3.   Mohr circle for limit state of plane BD

    图  4   考虑土体黏聚力和基础旁侧荷载的隔离体Ⅱ受力分析

    Figure  4.   Force analysis of isolator Ⅱ considering soil cohesion and lateral load of foundation

    图  5   分析隔离体Ⅶ的受力

    Figure  5.   Force analysis of isolator Ⅶ

    图  6   莫尔圆-AI面极限状态

    Figure  6.   Mohr circle for limit state of plane AI

    图  7   考虑土体黏聚力和基础旁侧荷载的隔离体Ⅵ受力分析

    Figure  7.   Force analysis of isolator Ⅵ considering soil cohesion and lateral load of foundation

    图  8   考虑土体黏聚力和基础旁侧荷载的隔离体Ⅰ受力分析

    Figure  8.   Force analysis of isolator Ⅰ considering soil cohesion and lateral load of foundation

    图  9   考虑土体自重的隔离体Ⅲ受力分析

    Figure  9.   Force analysis of isolator Ⅲ considering soil weight

    图  10   考虑土体自重的隔离体Ⅱ受力分析

    Figure  10.   Force analysis of isolation Ⅱ considering soil weight

    图  11   考虑土体自重的隔离体Ⅵ受力分析

    Figure  11.   Force analysis of isolator Ⅵ considering soil weight

    图  12   考虑土体自重的隔离体Ⅴ受力分析

    Figure  12.   Force analysis of isolation Ⅴ considering soil weight

    图  13   考虑土体自重的隔离体Ⅰ受力分析

    Figure  13.   Force analysis of isolation Ⅰ considering soil weight

    图  14   分析隔离体BENMGH的受力

    Figure  14.   Force analysis of isolation BENMGH

    图  15   考虑土体黏聚力和基础旁侧荷载的隔离体Ⅲ受力分析

    Figure  15.   Force analysis of isolator Ⅲ considering soil cohesion and lateral load of foundation

    图  16   对比文献[8]的临坡地基模型试验

    Figure  16.   Comparison with model tests for foundations near slopes of Reference [8]

    图  17   对比文献[4]的临坡地基数值模拟

    Figure  17.   Comparison with numerical simulations for foundations near slopes of Reference [4]

    表  1   对比文献[9]的临坡地基模型试验

    Table  1   Comparison with model tests for foundations near slopes of Reference [9]

    B/m D/m a qu试验/kPa qu式(36) /kPa
    b=0 b=0.75 b=1
    0.04 0 3.5 65.67 42.10 66.43 78.43
    0.04 0 7.0 79.00 60.12 93.88 108.89
    0.06 0 2.2 88.26 50.73 83.00 99.82
    0.06 0 4.5 136.37 73.45 129.92 148.55
    平均相对误差绝对值/% 61.8 7.1 15.9
    下载: 导出CSV
  • [1]

    MEYERHOF G G, HANNA A. Ultimate bearing capacity of foundations on layered soils under inclined load[J]. Canadian Geotechnical Journal, 1978, 15(4): 565-572. doi: 10.1139/t78-060

    [2] 胡卫东, 曹文贵. 基于Meyerhof理论的临坡地基极限承载力简化分析方法[J]. 湖南大学学报(自然科学版), 2015, 42(1): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201501012.htm

    HU Weidong, CAO Wengui. A simplified analysis method for the ultimate bearing capacity of ground foundation near slope based on the theory of Meyerhof[J]. Journal of Hunan University (Natural Sciences), 2015, 42(1): 81-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201501012.htm

    [3]

    JIN L X, FENG Y W, ZHANG H C, et al. The use of improved radial movement optimization to calculate the ultimate bearing capacity of a nonhomogeneous clay foundation adjacent to slopes[J]. Computers and Geotechnics, 2020, 118: 103338. doi: 10.1016/j.compgeo.2019.103338

    [4] 郑刚, 于晓旋, 杜娟, 等. 临近边坡的条形基础地基极限承载力数值分析[J]. 岩土力学, 2018, 39(10): 3812-3820, 3829. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810039.htm

    ZHENG Gang, YU Xiaoxuan, DU Juan, et al. Numerical analysis of ultimate bearing capacity of strip footings near slopes[J]. Rock and Soil Mechanics, 2018, 39(10): 3812-3820, 3829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810039.htm

    [5]

    CHEN T J, XIAO S G. An upper bound solution to undrained bearing capacity of rigid strip footings near slopes[J]. International Journal of Civil Engineering, 2020, 18(4): 475-485. doi: 10.1007/s40999-019-00463-w

    [6] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. http://cge.nhri.cn/cn/article/id/9755

    YU Maohong. Unified strength theory for geomaterials and lts applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) http://cge.nhri.cn/cn/article/id/9755

    [7] 俞茂宏, 武霞霞, 史俊, 等. 确定土体破坏准则的一个新方法[J]. 西安交通大学学报, 2020, 54(8): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202008002.htm

    YU Maohong, WU Xiaxia, SHI Jun, et al. A new strategy for determining failure criteria of soil[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202008002.htm

    [8]

    KESKIN M S, LAMAN M. Model studies of bearing capacity of strip footing on sand slope[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 699-711. doi: 10.1007/s12205-013-0406-x

    [9]

    CASTELLI F, LENTINI V. Evaluation of the bearing capacity of footings on slopes[J]. International Journal of Physical Modelling in Geotechnics, 2012, 12(3): 112-118. doi: 10.1680/ijpmg.11.00015

  • 期刊类型引用(9)

    1. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
    2. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
    3. 徐斌,王星亮,庞锐,陈柯好. 考虑组构演化的砂砾土弹塑性本构模型. 岩土力学. 2024(11): 3197-3211 . 百度学术
    4. 王家全,祝梦柯,林志南,梁宁. 细粒含量对饱和砾性土静动力学特性的影响. 土木工程学报. 2023(05): 112-121 . 百度学术
    5. 邢明源,胡欣宇. 基于神经网络模型的砾性土液化预测. 华北科技学院学报. 2021(03): 75-80 . 百度学术
    6. 付大庆,董德学,张修磊,孙浩东,史振铜,白书昕. 弥河朐山拦河闸砾石液化探讨. 水利技术监督. 2021(09): 162-166 . 百度学术
    7. 王海,王永志,汤兆光,袁晓铭,段雪锋. 剪切波速-相对密度联合试验与经验公式验证. 地下空间与工程学报. 2021(06): 1881-1887 . 百度学术
    8. 黄茂松,边学成,陈育民,王睿,顾晓强,周燕国. 土动力学与岩土地震工程. 土木工程学报. 2020(08): 64-86 . 百度学术
    9. 王世岐,张向阳,魏峰先,王健. 逐一土层进行液化等级判别初探. 工程勘察. 2020(12): 27-29 . 百度学术

    其他类型引用(7)

图(17)  /  表(1)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  32
  • PDF下载量:  87
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-08-23
  • 网络出版日期:  2023-03-09
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回