New solutions of Meyerhof's bearing capacity for foundations near slopes under asymmetric failure modes
-
摘要: 利用统一强度理论的平面应变强度方程,综合考虑中间主应力、基础至坡肩的水平距离、边坡高度和基底粗糙情况等因素,提出临坡地基坡面非对称破坏模式和坡底非对称破坏模式,继而建立条形基础下临坡地基新的Meyerhof承载力解答,给出具体应用步骤并开展理论退化分析与对比验证。研究表明:考虑坡后土体强度贡献所提出的非对称破坏模式更符合临坡地基的实际破坏形态;所得临坡地基Meyerhof承载力解答与文献模型试验和数值模拟均吻合良好;中间主应力可明显提高临坡地基的承载力;临坡地基承载力随边坡高度增加先减小后恒定。研究结果合理反映了土体强度的中间主应力效应、破坏模式的非对称性以及基础旁侧土体强度等工程实际情况,对临坡地基优化设计具有一定的理论指导意义。
-
关键词:
- 临坡地基 /
- 地基承载力 /
- 非对称破坏模式 /
- Meyerhof理论 /
- 统一强度理论
Abstract: The asymmetric failure modes involving the slope face failure and the below-toe failure are proposed, and then new solutions of Meyerhof's bearing capacity for strip foundations near slopes are presented by adopting the shear strength equation of unified strength theory under plane strain conditions. The combined effects of the intermediate principal stress, the horizontal distance of foundation from the slope shoulder, the slope height and the base roughness are taken into account. The specific application steps of the obtained solutions are provided, and theoretical degradation analysis and comparison verifications are conducted. It is found herein that the proposed asymmetrical failure mode considering the contribution of soil strength behind the slope is more consistent with the actual failure behavior of foundations near slopes. The obtained solutions of Meyerhof's bearing capacity for foundations near slopes are in good agreement with those of the model tests and numerical simulations in the literature. The intermediate principal stress has a marked improvement effect on the bearing capacity of foundations near slopes. The bearing capacity of foundations near slopes first decreases and then remains unchanged with the increase of the slope height. This study accounts for practical engineering conditions, such as the intermediate principal stress effect of soil strength, the asymmetry of failure modes and soil strength at foundation lateral side, which is of theoretical guiding significance to the optimal design of foundations near slopes. -
-
表 1 对比文献[9]的临坡地基模型试验
Table 1 Comparison with model tests for foundations near slopes of Reference [9]
B/m D/m a qu试验/kPa qu式(36) /kPa b=0 b=0.75 b=1 0.04 0 3.5 65.67 42.10 66.43 78.43 0.04 0 7.0 79.00 60.12 93.88 108.89 0.06 0 2.2 88.26 50.73 83.00 99.82 0.06 0 4.5 136.37 73.45 129.92 148.55 平均相对误差绝对值/% 61.8 7.1 15.9 -
[1] MEYERHOF G G, HANNA A. Ultimate bearing capacity of foundations on layered soils under inclined load[J]. Canadian Geotechnical Journal, 1978, 15(4): 565-572. doi: 10.1139/t78-060
[2] 胡卫东, 曹文贵. 基于Meyerhof理论的临坡地基极限承载力简化分析方法[J]. 湖南大学学报(自然科学版), 2015, 42(1): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201501012.htm HU Weidong, CAO Wengui. A simplified analysis method for the ultimate bearing capacity of ground foundation near slope based on the theory of Meyerhof[J]. Journal of Hunan University (Natural Sciences), 2015, 42(1): 81-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201501012.htm
[3] JIN L X, FENG Y W, ZHANG H C, et al. The use of improved radial movement optimization to calculate the ultimate bearing capacity of a nonhomogeneous clay foundation adjacent to slopes[J]. Computers and Geotechnics, 2020, 118: 103338. doi: 10.1016/j.compgeo.2019.103338
[4] 郑刚, 于晓旋, 杜娟, 等. 临近边坡的条形基础地基极限承载力数值分析[J]. 岩土力学, 2018, 39(10): 3812-3820, 3829. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810039.htm ZHENG Gang, YU Xiaoxuan, DU Juan, et al. Numerical analysis of ultimate bearing capacity of strip footings near slopes[J]. Rock and Soil Mechanics, 2018, 39(10): 3812-3820, 3829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810039.htm
[5] CHEN T J, XIAO S G. An upper bound solution to undrained bearing capacity of rigid strip footings near slopes[J]. International Journal of Civil Engineering, 2020, 18(4): 475-485. doi: 10.1007/s40999-019-00463-w
[6] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. http://cge.nhri.cn/cn/article/id/9755 YU Maohong. Unified strength theory for geomaterials and lts applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) http://cge.nhri.cn/cn/article/id/9755
[7] 俞茂宏, 武霞霞, 史俊, 等. 确定土体破坏准则的一个新方法[J]. 西安交通大学学报, 2020, 54(8): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202008002.htm YU Maohong, WU Xiaxia, SHI Jun, et al. A new strategy for determining failure criteria of soil[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202008002.htm
[8] KESKIN M S, LAMAN M. Model studies of bearing capacity of strip footing on sand slope[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 699-711. doi: 10.1007/s12205-013-0406-x
[9] CASTELLI F, LENTINI V. Evaluation of the bearing capacity of footings on slopes[J]. International Journal of Physical Modelling in Geotechnics, 2012, 12(3): 112-118. doi: 10.1680/ijpmg.11.00015
-
期刊类型引用(9)
1. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
2. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
3. 徐斌,王星亮,庞锐,陈柯好. 考虑组构演化的砂砾土弹塑性本构模型. 岩土力学. 2024(11): 3197-3211 . 百度学术
4. 王家全,祝梦柯,林志南,梁宁. 细粒含量对饱和砾性土静动力学特性的影响. 土木工程学报. 2023(05): 112-121 . 百度学术
5. 邢明源,胡欣宇. 基于神经网络模型的砾性土液化预测. 华北科技学院学报. 2021(03): 75-80 . 百度学术
6. 付大庆,董德学,张修磊,孙浩东,史振铜,白书昕. 弥河朐山拦河闸砾石液化探讨. 水利技术监督. 2021(09): 162-166 . 百度学术
7. 王海,王永志,汤兆光,袁晓铭,段雪锋. 剪切波速-相对密度联合试验与经验公式验证. 地下空间与工程学报. 2021(06): 1881-1887 . 百度学术
8. 黄茂松,边学成,陈育民,王睿,顾晓强,周燕国. 土动力学与岩土地震工程. 土木工程学报. 2020(08): 64-86 . 百度学术
9. 王世岐,张向阳,魏峰先,王健. 逐一土层进行液化等级判别初探. 工程勘察. 2020(12): 27-29 . 百度学术
其他类型引用(7)
-
其他相关附件