Mechanical behavior and failure mechanism of buried pipelines with anti-pullout bell-socket joints under strike-slip fault dislocation
-
摘要: 断层位错下供水管线的破坏形式主要集中在管道接口等管线结构力学性能薄弱环节。在传统供水管线承插式接口的基础上引入橡胶垫圈和金属限位环进行优化改进,提出一种新型抗拉拔承插式接口,在达到正常使用极限状态前可发生一定拉压和转动变形;当接口轴向变形达到一定变形后,发生自锁现象阻止接口发生进一步拉脱破坏;自锁后的接口带动相邻管段与土体发生相对运动,形成锁链效应,从而有效吸收断层错动引起的管线过渡变形。为了研究采用新型承插式接口供水管线抵抗断层错动的能力,针对管道埋深、管道-断层夹角等关键因素,通过建立三维非线性管-土相互作用有限元模型进行深入分析,结果表明:采用新型承插式接口的管线其抵抗断层大变形错动的能力提高了近4倍,其失效模式由普通承插式接口的拉拔破坏转为接口的弯曲破坏;对于采用新型承插式接口的管道,其在管线-断层夹角为120°左右并且浅埋的情况下,其抵抗断层错动的能力提高最明显;有效的提高管道接口的轴向拉伸承载能力是提高承插式管道抵抗场地大变形能力的关键。Abstract: The damage of water-supply pipelines under fault rupture primarily concentrates at the pipe joints, which are the weakest structural links of the pipelines. Based on the traditional bell-socket joint of water supply pipelines, the rubber gasket and metal limit ring are introduced in the joint configuration, and a new type of anti-pullout bell-spigot is proposed. The new joint allows certain tensile-compressive and rotational deformations before the service limit state under daily operation. When the axial deformation of the joint reaches a certain level, a self-locking mechanism is triggered to prevent the joint from the pullout damage. The self-locked joint in turn leads to the relative movement between the adjacent pipe segments and the surrounding soil, and forms a chain effect, which effectively overcomes the excessive pipeline deformation caused by the fault dislocation. To assess the performance of water-supply pipelines incorporated with the proposed anti-pullout bell-spigot joint under strike-slip fault, the influences of the critical factors such as pipeline burial depth and pipeline-fault angle are investigated based on the numerical analyses of a three-dimensional nonlinear pipe-soil interaction finite element model. The results show that the pipelines incorporated with the anti-pullout bell-spigot joint can accommodate a strike-slip fault displacement 4 times of that for a traditional joint, and its failure mode of the joint changes from the pull-out failure to the excessive bending one. Moreover, for a shallowly buried pipeline with a fault crossing angle of 120°, the proposed joint can most effectively improve the resistance of the segmented pipelines against strike-slip fault movement. Overall, improvement of the axial tensile bearing capacity of the pipe joint is the key to improve the performance of segmented pipelines subjected to large ground deformation.
-
Keywords:
- socket pipe /
- anti-pullout joint /
- strike-slip fault /
- mechanical behavior /
- numerical simulation
-
-
表 1 已有系列试验接口极限张开量
Table 1 Ultimate joint openings of existing tests
表 2 管道失效准则
Table 2 Failure criteria for pipeline
接口类型 接口失效判断指标 接口允许张开量/mm 接口允许转角/(°) 承插式 40 10 -
[1] CHEN W W, SHIH B J, CHEN Y C, et al. Seismic response of natural gas and water pipelines in the Ji-Ji earthquake[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1209-1214.
[2] HAYS W W. Case histories of damaging earthquakes[C]//Proceedings of the Fourth International Conference on Case Histories in Geotechnical Engineering, MO, 1998: 957-962.
[3] O'ROURKE M J, JIU X. Seismic Design of Buried and Offshore Pipelines: MCEER-12-MN04[R]. Buffalo: Multidisciplinary Center for Earthquake Engineering, State University of New York, 2012.
[4] SINGHAL A C. Nonlinear behavior of pipeline joints [C]//Proceedings of the Eighth World Conference on Earthquake Engineering. San Francisco, 1984.
[5] 周静海, 赵海艳, 魏立群. 球墨铸铁供水管线在地震作用下功能性实验分析[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(2): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200802005.htm ZHOU Jinghai, ZHAO Haiyan, WEI Liqun. Experimental research on functionality of ductile cast iron pipelines under the earthquake[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(2): 196-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200802005.htm
[6] VALSAMIS A I, BOUCKOVALAS G D, GANTES C J. Alternative design of buried pipelines at active fault crossings using flexible joints[J]. International Journal of Pressure Vessels and Piping, 2020, 180: 104038. doi: 10.1016/j.ijpvp.2019.104038
[7] 钟紫蓝, 王书锐, 甄立斌, 等. 经垫衬法修复后铸铁管道接口力学性能试验[J]. 哈尔滨工业大学学报, 2019, 51(6): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201906019.htm ZHONG Zilan, WANG Shurui, ZHEN Libin, et al. Experimental study on mechanical properties of ductile iron pipeline rehabilitated by corrosion protection lining[J]. Journal of Harbin Institute of Technology, 2019, 51(6): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201906019.htm
[8] ARGYROU C, O'ROURKE T D, STEWART H E, et al. Large-scale fault rupture tests on pipelines reinforced with cured-in-place linings[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(3): 04019004. doi: 10.1061/(ASCE)GT.1943-5606.0002018
[9] KIM J, O'CONNOR S, NADUKURU S E T al. Behavior of full-scale concrete segmented pipelines under permanent ground displacements[C]//Health Monitoring of Structural and Biological Systems 2010. SPIE, 2010, 7650: 257-267.
[10] KANEKO S, MIYAJIMA M, ERAMI M H. Study on behavior of ductile iron pipelines with earthquake-resistant joints buried across a fault[C]//International Efforts in Lifeline Earthquake Engineering. Chengdu, 2013.
[11] 贾晓辉, 王龙, 范晓庆, 等. 埋地分段管线在地震断层作用下的破坏模式研究[J]. 应用基础与工程科学学报, 2020, 28(1): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202001008.htm JIA Xiaohui, WANG Long, FAN Xiaoqing, et al. Failure mechanism of buried segmented pipelines subjected to earthquake fault[J]. Journal of Basic Science and Engineering, 2020, 28(1): 81-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202001008.htm
[12] QIN X G, WANG Y. Different failure modes assessment of bell-spigot jointed ductile iron pipes under abrupt transverse ground movements[J]. Soil Dynamics and Earthquake Engineering, 2022, 163: 107558. doi: 10.1016/j.soildyn.2022.107558
[13] MOHITROUR M, GOLSHAN H, MURRAY A. Pipeline design and construction: a practical approach[M]. New York: American Society of Mechanical Engineers, 2006.
[14] 钟紫蓝, 王书锐, 杜修力, 等. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230, 239. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903024.htm ZHONG Zilan, WANG Shurui, DU Xiuli, et al. Experimental and numerical study on axial mechanical properties of pipeline under pseudo-static loading[J]. Engineering Mechanics, 2019, 36(3): 224-230, 239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903024.htm
[15] 傅俊. 供水管线接口变形试验与抗震可靠度研究[D]. 上海: 同济大学, 2013. FU Jun. Displacement Experiment and Seismic Reliability Study of Water Supply Pipeline Joint[D]. Shanghai: Tongji University, 2013. (in Chinese
[16] 韩阳, 李冠潮, 李东桥, 等. 管道承插式柔性接口轴向力学性能试验研究[J]. 地震工程与工程振动, 2020, 40(5): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202005005.htm HAN Yang, LI Guanchao, LI Dongqiao, et al. Experimental study on axial mechanical properties of pipeline under pseudo-static loading[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(5): 44-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202005005.htm
[17] VAZOURAS P, KARAMANOS S A, DAKOULAS P. Mechanical behavior of buried steel pipelines crossing strike-slip seismic faults[C]//Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, 2011.
[18] ANASTASOPOULOS I, GAZETAS G, BRANSBY M F, et al. Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 943-958.
[19] LIU A W, HU Y X, ZHAO F X, et al. An equivalent-boundary method for the shell analysis of buried pipelines under fault movement[J]. Acta Seismologica Sinica, 2004, 17(1): 150-156.
[20] VAZOURAS P, KARAMANOS S A, DAKOULAS P. Finite element analysis of buried steel pipelines under strike-slip fault displacements[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1361-1376.
[21] YIMSIRI S, SOGA K, YOSHIZAKI K, et al. Lateral and upward soil-pipeline interactions in sand for deep embedment conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 830-842.
[22] 钟紫蓝, 张亚波, 侯本伟, 等. 考虑交叉管线影响的城市供水管网地震响应分析及震害评估[J]. 岩土工程学报, 2023, 45(5): 953-96. doi: 10.11779/CJGE20220201 ZHONG Zilan, ZHANG Yabo, HOU Benwei, et al. Seismic response analysis and damage assessment of urban water supply network with crossing pipelines impact[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 953-96. (in Chinese) doi: 10.11779/CJGE20220201
[23] 张亚波. 供水管道承插式接口力学性能试验研究及管网抗震性能评价[D]. 北京: 北京工业大学, 2022. ZHANG Yabo. Experimental Study on Mechanical Properties of Socket and Spigot Joint of Pipeline and Evaluation of Seismic Performance of Pipeline Network[D]. Beijing: Beijing University of Technology, 2022. (in Chinese)
[24] 钟紫蓝, 张亚波, 李锦强, 等. 球墨铸铁管道接口弯曲性能试验[J]. 哈尔滨工业大学学报, 2023, 55(9): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202309016.htm ZHONG Zilan, ZHANG Yabo, LI Jinqiang, et al. Bending performance test of push-on joints of ductile iron pipelines[J]. Journal of Harbin Institute of Technology, 2023, 55(9): 143-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202309016.htm
[25] Association Canadian. Oil and Gas Pipeline Systems CSA-Z662[S]. 2007.
-
期刊类型引用(10)
1. 张翔,陈莹,雷真,范翔,赵彦淇. 高温冷热循环对花岗岩物理力学性能的影响. 科学技术与工程. 2025(02): 737-752 . 百度学术
2. 翟明磊,李振华,杜锋,白海波,王文强. 考虑浆液渗流–岩体变形耦合作用的裂隙注浆模拟试验系统研制与应用. 岩石力学与工程学报. 2024(04): 878-889 . 百度学术
3. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 . 百度学术
4. 崔溦,裴介渲,江志安. 动水作用下岩体裂隙中颗粒运动规律的试验研究. 岩土力学. 2024(10): 2870-2878 . 百度学术
5. 罗涛,黄正濛,李兵磊,刘谦,刘辉,陈志强. 含二维和三维预制裂隙的脆性岩石试样的破坏特征数值验证. 南昌大学学报(工科版). 2024(03): 345-350 . 百度学术
6. 孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 . 百度学术
7. 张乐 ,杨志兵 ,李东奇 ,陈益峰 . 浆液在透明复制裂隙中驱替行为的可视化试验研究. 岩土力学. 2023(06): 1708-1718 . 百度学术
8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
9. 吕鑫,杨科,方珏静,段敏克,王于,张寨男. 采空区破碎岩体负压注浆加固试验研究与机制分析. 岩石力学与工程学报. 2023(S2): 4174-4188 . 百度学术
10. 李奔,刘汉乐,李培华,程锡治,王清,黄仕龙,刘新宇,金明哲. 碳酸盐岩石裂隙中DNAPL污染物迁移过程的电阻率成像. 地球物理学进展. 2023(06): 2704-2713 . 百度学术
其他类型引用(8)
-
其他相关附件