Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

玄武岩脆性类岩石相似模型材料比选与力学特性测试研究

孔洋, 阮怀宁, 汪璋淳

孔洋, 阮怀宁, 汪璋淳. 玄武岩脆性类岩石相似模型材料比选与力学特性测试研究[J]. 岩土工程学报, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984
引用本文: 孔洋, 阮怀宁, 汪璋淳. 玄武岩脆性类岩石相似模型材料比选与力学特性测试研究[J]. 岩土工程学报, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984
KONG Yang, RUAN Huaining, WANG Zhangchun. Selection and mechanical properties testy of similar brittle rock-like model materials of basalt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984
Citation: KONG Yang, RUAN Huaining, WANG Zhangchun. Selection and mechanical properties testy of similar brittle rock-like model materials of basalt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984

玄武岩脆性类岩石相似模型材料比选与力学特性测试研究  English Version

基金项目: 

国家自然科学基金项目 41831278

中央级公益性科研院所基本科研业务费专项资金项目 Y321003

详细信息
    作者简介:

    孔洋(1989—),男,山东泰安人,博士,工程师,主要从事节理岩体力学响应试验与数值计算方法方面的科研工作。Email: ykong@nhri.cn

  • 中图分类号: TU42;TU45

Selection and mechanical properties testy of similar brittle rock-like model materials of basalt

  • 摘要: 工程开挖区特殊断续柱状节理玄武岩赋存环境往往地质条件复杂、地应力水平较高,玄武岩块体单轴抗压强度高、离散性强,失效破坏脆性张拉劈裂特征显著,原生隐裂隙对强度和变形影响明显。以硬脆性玄武岩为研究对象,通过制备5类质量比模型材料试样,基于单轴压缩试验、巴西劈裂试验与声发射测试等技术手段,在相似比原则的基础上,在应力-应变曲线形式、试样破坏方式、压拉比(脆性指标)与物理力学参数等方面比选了可模拟柱状节理玄武岩岩块力学响应的脆性类岩石相似模型材料。研究成果可为断续柱状节理玄武岩物理模型试验开展各向异性力学响应、损伤演化特征与渗流-应力耦合特性等研究提供技术与材料支撑。
    Abstract: The occurrence environment of special discontinuous columnar jointed basalt in the engineering excavation area often has complex geological conditions and high in-situ stress levels. The basalt block has high uniaxial compressive strength and strong discreteness. Its brittle tensile splitting failure characteristics are obvious. The primary hidden fracture has obvious influences on the strength and deformation of the basalt block. Taking the hard and brittle basalt as the research object, by preparing the model material samples with 5 types of mass ratios, based on the uniaxial compression tests, Brazilian splitting tests and acoustic emission tests and other technical means, and on the principle of similarity ratio, the brittle rock-like model materials that can be used to simulate the mechanical response of columnar jointed basalt blocks are selected in terms of the form of stress-strain curve, failure mode of samples, compression-tensile ratio (brittleness index) and physical and mechanical parameters. The research results can provide technical and material supports for the researches on the physical model test on the anisotropic mechanical response, damage evolution characteristics and seepage-stress coupling characteristics of discontinuous columnar jointed basalt.
  • 钙质砂是由珊瑚骨骼、贝类、虫黄藻类等海洋生物残骸沉积而成,其主要组成成分是碳酸钙[1-3],是我国南海岛礁吹填的主要材料。因其生成环境、成因以及物质组成等因素影响,钙质砂具有颗粒易破碎、形状极不规则、内孔隙发育、微观结构复杂等显著区别于陆源石英砂的特点[4-6]。随着“一带一路”国家战略和建设“海洋强国”政策方针的推进,研究钙质砂工程力学特性具有重要意义[7-9]

    钙质砂作为填方工程的天然材料,其应力状态复杂多变,土体受到各向异性应力状态影响而产生初始静剪应力,在建(构)筑物的自重和动荷载(波浪、地震和交通荷载等)作用下,易引起地基强度降低、变形过大以及液化失稳等灾害。实际上,动荷载作用下剪切应力做功将导致材料损伤效应的累积,不排水条件下表现为孔压增长。因此,可以将孔压的升高与土体颗粒在运动或重排过程中所耗损的能量建立关联。损耗能作为标量,相较于应力、应变等矢量,可直接数学叠加,大幅度降低分析难度。Nemat-Nasser等[10]首先提出了耗散能量的概念,建立其与残余孔压的关系,来有效地评估孔隙水压力的产生和发展过程。Kokusho[11]和Pan等[12]提出了土骨架破坏产生的单位体积耗散能与应变和残余孔压累积直接相关,为评价砂土在不规则循环应力条件下的抗液化能力提供了有效方法。总体而言,上述研究主要针对石英砂,能否适用于钙质砂仍需进一步探究。

    本文以饱和钙质砂为研究对象,开展不排水条件下循环剪切三轴试验,探究相对密实度、初始静剪应力以及循环应力对其孔压发展的影响;同时,引入能量法,建立钙质砂孔压与损耗能之间联系,提出基于能量损耗的液化评价方法,为钙质砂地基稳定性分析提供理论依据和技术支撑。

    本文试验材料为中国南海某岛礁的天然钙质砂,颗粒多呈灰白色,形状有片状、块状、棒状等,颗粒内孔隙多、微观结构复杂,如图 1所示。

    图  1  典型钙质砂颗粒电镜扫描(SEM)图像
    Figure  1.  SEM image of typical calcareous sand particles

    经过现场取材、清水冲洗、烘干等过程后,对粒径大于5 mm的颗粒进行剔除,处理后颗粒分布级配曲线如图 2所示,主要基本物理性质参数见表 1。不难发现,试样基本不含0.1 mm以下的细颗粒,不均匀系数和曲率系数分别为6.84和0.78,属于不良级配砂土。

    图  2  钙质砂颗分级配曲线
    Figure  2.  Grain-size distribution curve of calcareous sand
    表  1  钙质砂物理性质指标
    Table  1.  Physical properties of calcareous sand
    相对质量密度 d50/
    mm
    不均匀系数 曲率系数 最大孔隙比 最小孔隙比
    2.79 2.0 6.84 0.78 1.15 0.87
    下载: 导出CSV 
    | 显示表格

    结合实际工况,采用CKC三轴试验系统模拟复杂应力条件下饱和钙质砂循环剪切试验,先进行有效围压为100 kPa的等向固结后再根据试验设计的初始静偏应力状态进行非等向固结,具体方案如表 2所示。初始静剪应力比SSR和循环应力比CSR可通过式(1)和(2)计算。

    表  2  不排水循环剪切试验方案
    Table  2.  Summary of undrained cyclic triaxial tests
    试验系列 相对密实度
    Dr
    qs/
    kPa
    qcyc/
    kPa
    SSR CSR Nf
    70%
    (密砂)
    0 20 0 0.1 232
    0 25 0 0.125 74
    0 30 0 0.15 17
    0 40 0 0.2 6
    20 30 0.1 0.15 168
    20 45 0.1 0.225 19
    20 50 0.1 0.25 3
    50 50 0.25 0.25 53
    50 60 0.25 0.3 11
    50 70 0.25 0.35 6
    80 70 0.4 0.35 14
    80 80 0.4 0.4 7
    -10 25 -0.05 0.125 78
    -10 30 -0.05 0.15 39
    -10 35 -0.05 0.175 8
    -20 20 -0.1 0.1 210
    -20 25 -0.1 0.125 11
    -20 30 -0.1 0.15 8
    -40 20 -0.2 0.1 57
    -40 25 -0.2 0.125 16
    -40 30 -0.2 0.15 8
    30%
    (松砂)
    0 15 0 0.075 943
    0 20 0 0.1 120
    0 25 0 0.125 37
    0 30 0 0.15 18
    24 30 0.12 0.15 61
    24 35 0.12 0.175 16
    24 40 0.12 0.2 5
    40 15 0.2 0.075 175
    40 20 0.2 0.1 9
    50 12.5 0.25 0.0625 17
    50 15 0.25 0.075 2
    -10 12.5 -0.05 0.0625 382
    -10 15 -0.05 0.075 180
    -10 20 -0.05 0.1 11
    -20 10 -0.1 0.05 246
    -20 12.5 -0.1 0.0625 202
    -20 15 -0.1 0.075 12
    -40 5 -0.2 0.025 104
    -40 7.5 -0.2 0.0375 13
    -40 10 -0.2 0.05 2
    下载: 导出CSV 
    | 显示表格
    SSR=qs2p0 (1)
    CSR=qcyc2p0 (2)

    式中:qs为初始静剪偏应力;qcyc为循环偏应力;p0为平均有效正应力。

    图 3给出不同初始偏应力作用下饱和密砂的孔压发展规律曲线。孔隙水压力可分为两类:①随着循环荷载作用实时变化的孔压,即实线所示的瞬态孔压,这种孔压会随着循环荷载的卸载而快速消散;②每个循环加载结束,试样未及时恢复的孔压,即虚线所示的残余孔压。从图 3(a)中可以看出,对于等向固结的试样,残余孔压在前期随着荷载的施加而逐渐累积,而在后期快速增长,直至达到荷载施加前的有效围压,ulim=100 kPa。如图 3(b)所示,在压缩静偏应力作用下,孔压在加载初期迅速累积,随着循环荷载持续进行,残余孔压逐渐趋于稳定,ulim=64.6 kPa。在拉伸静偏应力作用下,孔压发展与压缩静偏应力时有类似的变化趋势,孔压在加载初期累积较快而后基本保持不变,ulim=34.68 kPa。

    图  3  钙质砂孔压增长变化规律
    Figure  3.  Development of pore water pressure of calcareous sand

    同时,通过式(3)和(4)定义固结应力比Kc和残余孔压比ur

    Kc=σv0σh0 (3)
    ur=uσh0 (4)

    式中:σv0σh0分别为初始有效竖向应力和水平应力,u为残余孔压。

    图 4给出了饱和密砂的极限残余孔压比和固结应力比的关系曲线。从图中可以看出,饱和密砂的极限残余孔压比随着固结应力比的增大呈先增大后减小的趋势,在Kc=1(等向固结)时,极限残余孔压比达到最大值ur, lim=1,且大致上呈线性分布,与循环应力幅值大小无明显关系。

    图  4  极限残余孔压比与固结应力比的关系
    Figure  4.  Relationship between ultimate residual pore pressure ratio and consolidation stress ratio

    对于同一材料的砂土,其在循环荷载作用下有效应力路径将沿着平行于等向固结线(ICL)的方向逐渐靠近临界状态线(CSL),而与循环应力幅值无关,如图 5所示。因此,对于给定的初始应力状态(σh0σv0),会与临界状态线相交于一点,且理论上初始应力点与最终应力点之间的水平距离Δu为试验中的极限残余孔压,如式(5)所示。根据urKc定义,可得到两者关系如式(6),符合图 4所示的线性关系。

    ulim=Δu=σh0σv0σh0m1 (5)
    ur, lim=ulimσh0=1Kc1m1 (6)
    图  5  初始静剪应力状态对残余孔压影响示意图
    Figure  5.  Influences of initial static shear stress on residual pore pressure

    动荷载作用下饱和砂土损耗的能量主要用于颗粒的相对运动和重新排列。因此,引入能量法,提出基于损耗能的砂土液化评价方法。循环加载过程中一个振次的损耗能W可用应力-应变滞回圈的面积表示,即:

    W=n1i=112(qi+1+qi)(εa, i+1εa, i) (7)

    式中:n为计算增量的总个数,qiεa, i分别为第i个增量的偏应力和轴向应变。

    图 6分别给出饱和钙质砂在不同初始静偏应力作用下残余孔压比与正交化损耗能的内在关系,正交化损耗能Wn为损耗能W与初始有效水平正应力σh0的比值。结果显示:饱和密砂的残余孔压初期增长缓慢,随着Wn的增大而较快增长,最后趋于稳定;在饱和松砂中也观察到类似的变化趋势。这说明残余孔压与损耗能的关系主要取决于初始应力条件。

    图  6  残余孔压比与损耗能的关系
    Figure  6.  Relationship between residual pore pressure ratio and dissipated energy

    图 7可以看出,饱和钙质砂在失稳破坏时所积累的损耗能随着初始静剪应力的增加而增加;对于同一初始应力状态,密砂所需能量始终大于松砂。研究表明[13-14],饱和砂土在循环荷载作用下损耗能主要与初始应力和相对密实度有关,受循环荷载幅值影响极小,具体可用式(8)表示:

    Wn=10a(Dr0.78)10b(SSR1.0) (8)
    图  7  损耗能与初始静剪应力比的关系
    Figure  7.  Relationship between dissipated energy and initial static shear stress ratio

    式中:ab为经验参数,根据本次试验数据可分别取0.65,1.5。图 8对损耗能的试验实测值与通过式(8)所得的预测值进行对比,发现两者基本落在斜率为1的对角线两侧,表明能量模型可较好地预测不同试验条件下饱和钙质砂的损耗能。

    图  8  损耗能实测值与预测值
    Figure  8.  Measured and predicted values of dissipated energy

    (1)饱和钙质砂的极限残余孔压比随固结应力比呈先增大后减小的趋势,在Kc=1时存在最大值,临界状态理论可以解释此现象。

    (2)不排水循环加载条件下饱和钙质砂的损耗能与试样的初始静剪应力比和相对密实度有关,受循环应力比影响极小,可通过构建的能量模型较好地预测不同试验条件下饱和钙质砂所累积的损耗能。

    致谢: 感谢国家留学基金委公派出国联合培养博士生项目,由衷鸣谢澳大利亚纽卡斯尔大学卓越岩土工程中心Olivier Buzzi教授与ED Building试验室全体工作人员。
  • 图  1   坝址区柱状节理玄武岩块体典型破坏特征

    Figure  1.   Typical failure characteristics of columnar jointed basalt blocks in dam site area

    图  2   相似模型材料比选试验加载装置及测试试样

    Figure  2.   Test loading apparatus and prepared samples for selection of similar model materials

    图  3   不同配比试样单轴压缩试验轴向应力-应变曲线

    Figure  3.   Axial stress-strain curves of samples with different quality ratios from uniaxial compression tests

    图  4   不同配比试样单轴压缩试验典型破坏模式

    (a) 柱状节理玄武岩[29-30] (b) R1配比试样

    Figure  4.   Typical failure characteristics of samples with different quality ratios from uniaxial compression tests

    图  5   不同配比试样巴西劈裂试验抗拉强度-应变曲线

    Figure  5.   Tensile strength-strain curves of samples with different quality ratios from Brazil splitting tests

    图  6   不同配比试样巴西劈裂试验典型破坏模式

    Figure  6.   Typical failure characteristics of samples with different quality ratios from Brazil splitting tests

    图  7   R1配比试样单轴压缩、巴西劈裂试验声发射特征曲线

    Figure  7.   Acoustic emission characteristic curves of samples with R1 quality ratio from uniaxial compression tests and Brazil splitting tests

    图  8   相似模型材料Hoek三轴剪切试验结果

    Figure  8.   Hoek triaxial test results of similar model materials

    表  1   典型柱状节理玄武岩块体力学参数统计表

    Table  1   Statistical table of mechanical parameters of typical columnar jointed basalt blocks

    文献来源 岩石描述 密度 UCS 抗拉强度 变形模量 弹性模量 泊松比 黏聚力 摩擦角
    ρ/(g·cm-3) σc/MPa σt/MPa Ed/GPa E/GPa ν c/MPa ϕ/(°)
    胡伟等[10] 含隐裂隙玄武岩 55.9-194
    (106)
    17.5~38.6
    (29.1)
    30~55.7
    (42.9)
    0.006~0.263
    石安池等[14]
    Wei等[15]
    自然状态参数 2.85~2.94
    (2.90)
    47.7~255
    (114)
    2.51~10.1
    (6.01)
    47~83.4
    (65.1)
    50.9~86.6
    (68.3)
    0.17~0.26
    (0.23)
    10.2~15
    (12.3)
    江权等[16]
    Jiang等[17]
    平行于柱轴方向 2.70 117.6 42.1 0.29
    垂直于柱轴方向 2.70 179.5 38.2 0.25
    Ji等[18] 镶嵌块状结构 2.80 135.2 6.10 56.8 0.22 12.4 54.40
    镶嵌破碎结构 2.73 76.2 4.30 43.0 0.23 8.6 50.30
    Jin等[19-20] 考虑隐晶质裂纹 1.25 32.3 0.21 1.3 40
    Jin等[21] 第一类CJB 2.83~2.93 47.7~255 2.51~10.1 30~86.6 0.17~0.26 10~13 45~50
    注:“()”内为均值;“—”表示无该值或该值缺项;CJB为柱状节理玄武岩(Columnar Jointed Basalt)的简称;UCS为单轴抗压强度(uniaxial compression strength)简称。
    下载: 导出CSV

    表  2   模型材料配比方案表

    Table  2   Proportion schemes of model materials

    编号 质量比 试样尺寸/mm 高径比 数量
    R1 1︰0.5︰0.4︰0.002 Φ53.5×h107.0 2 3
    R2 1︰1︰0.4︰0.002 Φ53.5×h107.0 2 3
    R3 1︰2︰0.5︰0.002 Φ53.5×h107.0 2 3
    R4 1︰3︰0.6︰0.002 Φ53.5×h107.0 2 3
    R5 1︰4︰0.8︰0.002 Φ53.5×h107.0 2 3
    注:试样尺寸为单轴压缩试验的试样尺寸,R1-R5配比巴西劈裂试验试样尺寸为Φ53.5 mm×h27.0 mm。
    下载: 导出CSV

    表  3   不同配比试样测试结果统计表

    Table  3   Statistical table of test results for samples with different quality ratios

    配比编号 UCS σc比值 抗拉强度 σt比值 模量 E比值 压拉比
    σc/MPa CJB/Ri σt/MPa CJB/Ri E/GPa CJB/Ri σc/σt
    R1 70.40 1.74 4.43 1.50 13.86 1.65 15.89
    R2 42.11 2.91 3.92 1.70 7.73 2.97 10.74
    R3 56.54 2.17 4.97 1.34 11.64 1.97 11.38
    R4 30.54 4.01 3.53 1.89 7.17 3.20 8.65
    R5 17.75 6.90 3.23 2.06 5.55 4.13 5.50
    CJB[29-30] 122.41 6.66 22.93 18.39
    注:模量E值取变形模量Et50
    下载: 导出CSV
  • [1] 杨更社, 孙钧. 中国岩石力学的研究现状及其展望分析[J]. 西安公路交通大学学报, 2001, 21(3): 5-9. doi: 10.3321/j.issn:1671-8879.2001.03.002

    YANG Gengshe, SUN Jun. On the present state and development of rock mechanics in China[J]. Journal of Xi'an Highway University, 2001, 21(3): 5-9. (in Chinese) doi: 10.3321/j.issn:1671-8879.2001.03.002

    [2] 吴刚. 工程岩体卸荷破坏机制研究的现状及展望[J]. 工程地质学报, 2001, 9(2): 174-181. doi: 10.3969/j.issn.1004-9665.2001.02.011

    WU Gang. Current status and prospects of research on mechanism for unloading failure of engineering rock mass[J]. Journal of Engineering Geology, 2001, 9(2): 174-181. (in Chinese) doi: 10.3969/j.issn.1004-9665.2001.02.011

    [3] 曹平. 各向异性岩体力学的理论与应用研究[D]. 长沙: 中南大学, 1990.

    CAO Ping. Theoretical and Applied Research on Anisotropic Rock Mass Mechanics[D]. Changsha: Central South University, 1990. (in Chinese)

    [4] 徐卫亚, 郑文棠, 石安池. 水利工程中的柱状节理岩体分类及质量评价[J]. 水利学报, 2011, 42(3): 262-270. doi: 10.13243/j.cnki.slxb.2011.03.013

    XU Weiya, ZHENG Wentang, SHI Anchi. Classification and quality assessment of irregular columnar jointed basaltic rock mass for hydraulic engineering[J]. Journal of Hydraulic Engineering, 2011, 42(3): 262-270. (in Chinese) doi: 10.13243/j.cnki.slxb.2011.03.013

    [5] 孔洋. 柱状节理岩体变形破坏机制与渗流-应力耦合特性研究[D]. 南京: 河海大学, 2020.

    KONG Yang. Deformation and Failure Mechanism, and Seepage-Stress Coupling Characteristics of Columnar Jointed Rock Masses[D]. Nanjing: Hohai University, 2020. (in Chinese)

    [6] 张春生, 徐建荣, 吉华, 等. 白鹤滩水电站柱状节理玄武岩力学特性及松弛控制[J]. 岩石力学与工程学报, 2022, 41(7): 1297-1309. doi: 10.13722/j.cnki.jrme.2021.1175

    ZHANG Chunsheng, XU Jianrong, JI Hua, et al. Mechanical characteristics and relax control of columnar jointed basalt at Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(7): 1297-1309. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.1175

    [7] 丰光亮, 张建聪, 江权, 等. 开挖强卸荷下柱状节理岩体时效破裂过程协同观测与机制分析[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3041-3051. doi: 10.13722/j.cnki.jrme.2021.0200

    FENG Guangliang, ZHANG Jiancong, JIANG Quan, et al. Synergistic observation and mechanism analysis of time-dependent fracture process of columnar jointed rockmass under strong unloading during excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3041-3051. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0200

    [8] 单治钢, 倪卫达, 洪望兵, 等. 白鹤滩水电站枢纽区重大工程地质问题及对策研究[C]//2021年全国工程地质学术年会论文集, 青岛, 2021.

    SHAN Zhigang, NI Weida, HONG Wangbing, et al. Major engineering geological problems and countermeasures of Baihetan hydropower station[C]//Proceedings of the 2021 National Engineering Geology Annual Conference, Qingdao, 2021. (in Chinese)

    [9] 张建聪, 江权, 郝宪杰, 等. 高应力下柱状节理玄武岩应力-结构型塌方机制分析[J]. 岩土力学, 2021, 42(9): 2556-2568, 2577. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109024.htm

    ZHANG Jiancong, JIANG Quan, HAO Xianjie, et al. Analysis of stress-structural collapse mechanism of columnar jointed basalt under high stress[J]. Rock and Soil Mechanics, 2021, 42(9): 2556-2568, 2577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109024.htm

    [10] 胡伟, 邬爱清, 陈胜宏, 等. 含隐裂隙柱状节理玄武岩单轴力学特性研究[J]. 岩石力学与工程学报, 2017, 36(8): 1880-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708007.htm

    HU Wei, WU Aiqing, CHEN Shenghong, et al. Mechanical properties of columnar jointed basalt rock with hidden fissures under uniaxial loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1880-1888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708007.htm

    [11] 孟国涛, 樊义林, 江亚丽, 等. 白鹤滩水电站巨型地下洞室群关键岩石力学问题与工程对策研究[J]. 岩石力学与工程学报, 2016, 35(12): 2549-2560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm

    MENG Guotao, FAN Yilin, JIANG Yali, et al. Key rock mechanical problems and measures for huge Caverns of Baihetan hydropower plant[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2549-2560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm

    [12] 刘国锋, 冯夏庭, 江权, 等. 白鹤滩大型地下厂房开挖围岩片帮破坏特征、规律及机制研究[J]. 岩石力学与工程学报, 2016, 35(5): 865-878. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605001.htm

    LIU Guofeng, FENG Xiating, JIANG Quan, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse Caverns in Baihetan[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 865-878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605001.htm

    [13] 倪绍虎, 何世海, 陈益民, 等. 柱状节理玄武岩的破坏模式、破坏机制及工程对策[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3064-3075. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1054.htm

    NI Shaohu, HE Shihai, CHEN Yimin, et al. The failure modes, failure mechanisms and countermeasures of columnar jointed basalt rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3064-3075. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1054.htm

    [14] 石安池, 唐明发, 单治钢, 等. 金沙江白鹤滩水电站可行性研究选坝阶段柱状节理玄武岩专题研究工程地质研究报告[R]. 杭州: 中国水电顾问集团华东勘测设计研究院, 2006.

    SHI An-chi, TANG Fa-ming, SHAN Zhi-gang, et al. Feasibility Study of Jinsha River Baihetan Hydropower Station Project Geology Research Report on Columnar Jointed Basalt in Dam Selection Stage[R]. Hangzhou: PowerChina Huadong Engineering Corporation Limited, 2006. (in Chinese)

    [15]

    WEI Y, XU M, WANG W, et al. Feasibility of columnar jointed basalt used for high-arch dam foundation[J]. Journal of Rock Mechanics & Geotechnical Engineering, 2011, 3(S1): 461-468.

    [16] 江权, 冯夏庭, 樊义林, 等. 柱状节理玄武岩各向异性特性的调查与试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2527-2535. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312020.htm

    JIANG Quan, FENG Xiating, FAN Yilin, et al. Survey and laboratory study of anisotropic properties for columnar jointed basaltic rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2527-2535. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312020.htm

    [17]

    JIANG Q A, FENG X T, HATZOR Y H, et al. Mechanical anisotropy of columnar jointed basalts: an example from the Baihetan hydropower station, China[J]. Engineering Geology, 2014, 175: 35-45.

    [18]

    JI H, ZHANG J C, XU W Y, et al. Experimental investigation of the anisotropic mechanical properties of a columnar jointed rock mass: observations from laboratory-based physical modelling[J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1919-1931.

    [19]

    JIN C Y, YANG C X, FANG D, et al. Study on the failure mechanism of basalts with columnar joints in the unloading process on the basis of an experimental cavity[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1275-1288.

    [20]

    JIN C Y, FENG X T, YANG C X, et al. Application of D-CRDM method in columnar jointed basalts failure analysis[J]. Journal of Applied Mathematics, 2013, 2013: 1-10.

    [21]

    JIN C Y, LI S G, LIU J P. Anisotropic mechanical behaviors of columnar jointed basalt under compression[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 317-330.

    [22] 夏自锋. 柱状节理岩体的相似材料模型试验与数值模拟研究[D]. 沈阳: 东北大学, 2014.

    XIA Zifeng. Research on similar material model test and numerical simulation for columnar jointed rock mass[D]. Shenyang: Northeastern University, 2014. (in Chinese)

    [23] 李晓红. 岩石力学实验模拟技术[M]. 北京: 科学出版社, 2007.

    LI Xiaohong. Simulation Technology of Rock Mechanics Experiment[M]. Beijing: Science Press, 2007. (in Chinese)

    [24] 周慧颖, 李树忱, 段壮, 等. 玄武岩相似材料配制及其物理力学参数研究[J]. 人民长江, 2021, 52(6): 130-135, 147. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202106022.htm

    ZHOU Huiying, LI Shuchen, DUAN Zhuang, et al. Physical and mechanical parameters analysis and preparation of similar materials for basalt[J]. Yangtze River, 2021, 52(6): 130-135, 147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202106022.htm

    [25] 柯志强, 王环玲, 徐卫亚, 等. 含横向节理的柱状节理岩体力学特性试验研究[J]. 岩土力学, 2019, 40(2): 660-667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902028.htm

    KE Zhiqiang, WANG Huanling, XU Weiya, et al. Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints[J]. Rock and Soil Mechanics, 2019, 40(2): 660-667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902028.htm

    [26] 巢志明, 王环玲, 徐卫亚, 等. 循环加卸载下柱状节理材料渗透率和孔隙度演化规律研究[J]. 岩石力学与工程学报, 2017, 36(1): 124-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701011.htm

    CHAO Zhiming, WANG Huanling, XU Weiya, et al. Permeability and porosity of columnar jointed rock under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 124-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701011.htm

    [27] 巢志明, 王环玲, 徐卫亚, 等. 柱状节理岩体渗透性模型试验研究[J]. 岩土工程学报, 2016, 38(8): 1407-1416. doi: 10.11779/CJGE201608007

    CHAO Zhiming, WANG Huanling, XU Weiya, et al. Model tests on permeability of columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1407-1416. (in Chinese) doi: 10.11779/CJGE201608007

    [28] 肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012, 33(11): 3251-3256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211009.htm

    XIAO Taoli, LI Xinping, GUO Yunhua. Experimental study of failure characteristic of single jointed rock mass under triaxial compression tests[J]. Rock and Soil Mechanics, 2012, 33(11): 3251-3256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211009.htm

    [29]

    LIU G, XIAO F K, CHENG Q L, et al. Experimental study on acoustic emission characteristics of dry and saturated basalt columnar joints under uniaxial compression and tensile damage[J]. Shock and Vibration, 2019, 2019: 1-12.

    [30] 刘刚. 柱状节理玄武岩破坏全过程声发射监测研究[D]. 哈尔滨: 黑龙江科技大学, 2014.

    LIU Gang. The Process Columnar Joints Basalt Damage Acoustic Emission Monitoring Research[D]. Harbin: Heilongjiang University of Science and Technology, 2014. (in Chinese)

    [31] 张春生, 朱永生, 褚卫江, 等. 白鹤滩水电站隐晶质玄武岩力学特性及Hoek-Brown本构模型描述[J]. 岩石力学与工程学报, 2019, 38(10): 1964-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910003.htm

    ZHANG Chunsheng, ZHU Yongsheng, CHU Weijiang, et al. Mechanical behaviors of basalt at Baihetan hydropower station and simulation with Hoek-Brown constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1964-1978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910003.htm

    [32] 张传庆, 刘振江, 张春生, 等. 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907003.htm

    ZHANG Chuanqing, LIU Zhenjiang, ZHANG Chunsheng, et al. Experimental study on rupture evolution and failure characteristics of aphanitic basalt[J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907003.htm

    [33]

    HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392.

图(8)  /  表(3)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  50
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回