• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

柱状节理玄武岩松弛时空效应及其控制技术

刘宁, 高要辉, 陈平志

刘宁, 高要辉, 陈平志. 柱状节理玄武岩松弛时空效应及其控制技术[J]. 岩土工程学报, 2023, 45(10): 2052-2061. DOI: 10.11779/CJGE20220845
引用本文: 刘宁, 高要辉, 陈平志. 柱状节理玄武岩松弛时空效应及其控制技术[J]. 岩土工程学报, 2023, 45(10): 2052-2061. DOI: 10.11779/CJGE20220845
LIU Ning, GAO Yaohui, CHEN Pingzhi. Relaxation time-space effects of columnar jointed basalt and their control technologies[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2052-2061. DOI: 10.11779/CJGE20220845
Citation: LIU Ning, GAO Yaohui, CHEN Pingzhi. Relaxation time-space effects of columnar jointed basalt and their control technologies[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2052-2061. DOI: 10.11779/CJGE20220845

柱状节理玄武岩松弛时空效应及其控制技术  English Version

基金项目: 

中国博士后科学基金项目 2021M691000

详细信息
    作者简介:

    刘宁(1981—),男,博士,教授级高级工程师,主要从事岩石力学与地下工程方面的研究工作。E-mail:liu_n@hdec.com

    通讯作者:

    高要辉, E-mail:gao_yh@hdec.com

  • 中图分类号: TU411

Relaxation time-space effects of columnar jointed basalt and their control technologies

  • 摘要: 柱状节理玄武岩表现出开挖后易松弛的特性,对白鹤滩水电站拱坝变形和地下洞室群稳定都有重要影响,是该工程的关键岩石力学问题之一。白鹤滩水电站柱状节理玄武岩表现出卸荷松弛、破裂松弛和坍塌松弛3种类型,采用钻孔声波测试为主、钻孔电视全景成像测试为辅的方法开展监测,并建立松弛层划分标准;发现开挖松弛具有显著的时间效应和空间效应;松弛时间效应可用对数函数表征,松弛大致在开挖35 d后趋于稳定,松弛与支护的及时性和有效性密切相关;松弛深度随着洞室跨度、开挖高度和断面面积的增加而不断增大,边墙松弛增幅尤其显著;开挖松弛是岩性、结构面、岩体结构和地应力共同控制的结果;提出成型成套松弛控制技术,取得了良好的控制效果。
    Abstract: It is easy for the columnar jointed basalt to relax after excavation, which has important influences on the deformation of arch dam and the stability of the surrounding rock of underground caverns. Therefore, the relaxation of the columnar jointed basalt is one of the main rock mechanics problems in Baihetan Hydropower Station. It mainly includes three types: unloading relaxation, fracturing relaxation and collapse relaxation. The relaxation of columnar jointed basalt is monitored by using the borehole acoustic wave tests as the main monitoring method and the borehole TV panoramic imaging tests as the auxiliary monitoring method. It is found that the excavation-induced relaxation has significant time effects and space effects. The time effects of relaxation can be represented by the logarithmic function, and the relaxation tends to be stable after about 35 days of excavation. The macroscopic relaxation failure is closely related to timeliness and limitation of support. The relaxation depth, especially for side walls, increases gradually with the increase of the cavern span, excavation height and cross-sectional area. The relaxation of the columnar jointed basalt is the combined effects of lithology, structural plane, rock mass structure and in-situ stress. A series of control technologies are put forward, and good control effects are achieved.
  • 图  1   白鹤滩水电站枢纽建筑物布置图

    Figure  1.   Layout of structures of Baihetan Hydropower Station

    图  2   白鹤滩水电站第一类柱状节理玄武岩典型照片

    Figure  2.   Typical photos of the first type of columnar jointed basalt in Baihetan Hydropower Station

    图  3   柱状节理玄武岩松弛破坏

    Figure  3.   Relaxation failure of columnar jointed basalt

    图  4   柱状节理玄武岩松弛破裂

    Figure  4.   Relaxation fracturing of columnar jointed basalt

    图  5   柱状节理玄武岩坍塌破坏

    Figure  5.   Collapse failure of columnar jointed basalt

    图  6   试验洞柱状节理玄武岩声波测试典型结果

    Figure  6.   Typical acoustic wave test results of columnar jointed basalt in test tunnel

    图  7   试验洞柱状节理玄武岩钻孔全景成像测试典型结果

    Figure  7.   Typical panoramic imaging test results of columnar jointed basalt in test tunnel

    图  8   柱状节理玄武岩松弛发展的声波测试结果

    Figure  8.   Acoustic wave test results of relaxation evolution process of columnar jointed basalt

    图  9   柱状节理玄武岩松弛概化模型

    Figure  9.   Conceptual model for relaxation of columnar jointed basalt

    图  10   不同应力水平下柱状节理玄武岩松弛曲线

    Figure  10.   Relaxation curves of columnar jointed basalt under different stress levels

    图  11   柱状节理玄武岩松弛与开挖宽度的关系

    Figure  11.   Relationship between excavation width and relaxation of columnar jointed basalt

    图  12   柱状节理玄武岩松弛的空间效应

    Figure  12.   Space effects of relaxation of columnar jointed basalt

    图  13   柱状节理玄武岩洞室开挖响应特征

    Figure  13.   Responses of columnar jointed basalt cavern to excavation process

    图  14   柱状节理玄武岩洞室应力分布

    Figure  14.   Distribution of stress of surrounding rock in cavern wall of columnar jointed basalt

    图  15   不连续结构面切割柱状节理岩体的破坏结果

    Figure  15.   Failure results of columnar jointed rock mass influenced by discontinuous structural plane

    图  16   坝基柱状节理岩体松弛控制技术

    Figure  16.   Relaxation control technologies of columnar jointed rock mass in dam foundation

    图  17   尾水调压室柱状节理岩体开挖与支护过程

    Figure  17.   Excavation and support process of columnar jointed rock mass in downstream surge chamber

    图  18   导流洞典型柱状节理岩体位移时序过程线

    Figure  18.   Variation curves of displacement of columnar jointed rock mass in diversion tunnel

    表  1   柱状节理玄武岩松弛层划分标准表

    Table  1   Standard division table of relaxation layers of columnar jointed basalt

    岩体
    类别
    岩性 波速/(m·s-1)
    未松弛岩体 松弛岩体
    第二类柱状节理玄武岩 ≥5100 5100~4500
    1 第一类、第二类柱状节理玄武岩 4700~5100 4000~3500
    2 第一类、第二类柱状节理玄武岩 4000~4700
    下载: 导出CSV

    表  2   各监测部位松弛深度统计表

    Table  2   Statistical values of relaxation depth at monitoring positions

    检测位置 勘探平洞 模拟试验洞 灌浆
    试验区
    导流洞 左岸坝基 河床坝基
    编号 未锚固区 锚固区 #3 #4 开挖
    试验区
    (660~650)
    保护层
    开挖面(650~628)
    建基面 建基面
    尺寸/m 2×2 3×3 6.5×13 15 17.5×22 95 95 95 95
    部位 洞壁 全洞 底板 底板 底板 洞壁 洞壁 斜坡 斜坡 斜坡 斜坡—平面
    松弛深度/m 1.0~2.1 0.7~1.5 1.3~3.1 2.5~3.0 5.2~7.7 0.1~4.3 1.1~3.2 0.4~4.0 0.2~2.8
    平均松弛
    深度/m
    0.32 0.60 1.40 1.09 2.11 2.31 1.98 1.20 1.30
    与柱状节理交角 平行 横切 横切 横切 平行 平行 斜切 斜切 斜切 斜切—横切
    下载: 导出CSV
  • [1] 王仁坤. 我国特高拱坝的建设成就与技术发展综述[J]. 水利水电科技进展, 2015, 35(5): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505004.htm

    WANG Renkun. Review of construction achievements and technological development of super-high arch dam in China[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 13-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505004.htm

    [2] 樊启祥, 林鹏, 蒋树, 等. 金沙江下游大型水电站岩石力学与工程综述[J]. 清华大学学报(自然科学版), 2020, 60(7): 537-556. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202007001.htm

    FAN Qixiang, LIN Peng, JIANG Shu, et al. Review on the rock mechanics and engineering practice for large hydropower stations along the downstream section of the Jinsha River[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(7): 537-556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202007001.htm

    [3] 樊启祥, 周绍武, 李炳锋. 溪洛渡特高拱坝建设的岩石工程关键技术[J]. 岩石力学与工程学报, 2012, 31(10): 1998-2015. doi: 10.3969/j.issn.1000-6915.2012.10.005

    FAN Qixiang, ZHOU Shaowu, LI Bingfeng. Key technologies of rock engineering for construction of xiluodu superhigh arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1998-2015. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.10.005

    [4] 张石虎, 傅少君, 陈胜宏. 坝基岩体开挖松弛效应分析与锚固效果评估研究[J]. 岩石力学与工程学报, 2014, 33(3): 514-522. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403010.htm

    ZHANG Shihu, FU Shaojun, CHEN Shenghong. Research analysis of excavation-induced relaxation of rock foundation and evaluation of anchor effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 514-522. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403010.htm

    [5] 胡著秀, 张建海, 周钟, 等. 锦屏一级高拱坝坝基加固效果分析[J]. 岩土力学, 2010, 31(9): 2861-2868. doi: 10.3969/j.issn.1000-7598.2010.09.029

    HU Zhuxiu, ZHANG Jianhai, ZHOU Zhong, et al. Analysis of stress and deformation of Jinping Ⅰ High Arch Dam after foundation reinforcement[J]. Rock and Soil Mechanics, 2010, 31(9): 2861-2868. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.09.029

    [6] 杨剑, 王进廷, 王吉焕, 等. 二滩拱坝及坝基材料参数反馈分析[J]. 水力发电学报, 2008, 27(2): 78-83. doi: 10.3969/j.issn.1003-1243.2008.02.015

    YANG Jian, WANG Jinting, WANG Jihuan, et al. Feedback analysis of material parameters of Ertan arch dam and its foundation rock[J]. Journal of Hydroelectric Engineering, 2008, 27(2): 78-83. (in Chinese) doi: 10.3969/j.issn.1003-1243.2008.02.015

    [7] 黄岩松, 周维垣, 杨若琼, 等. 拉西瓦拱坝稳定性分析和评价[J]. 岩石力学与工程学报, 2006, 25(5): 901-905. doi: 10.3321/j.issn:1000-6915.2006.05.005

    HUANG Yansong, ZHOU Weiyuan, YANG Ruoqiong, et al. Stability analysis and evaluation of laxiwa arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 901-905. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.05.005

    [8] 石安池, 唐鸣发, 周其健. 金沙江白鹤滩水电站柱状节理玄武岩岩体变形特性研究[J]. 岩石力学与工程学报, 2008, 27(10): 2079-2086. doi: 10.3321/j.issn:1000-6915.2008.10.016

    SHI Anchi, TANG Mingfa, ZHOU Qijian. Research of deformation characteristics of columnar jointed basalt at Baihetan hydropower station on Jinsha River[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2079-2086. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.10.016

    [9] 倪绍虎, 何世海, 陈益民, 等. 柱状节理玄武岩的破坏模式、破坏机制及工程对策[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3064-3075. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1054.htm

    NI Shaohu, HE Shihai, CHEN Yimin, et al. The failure modes, failure mechanisms and countermeasures of columnar jointed basalt rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3064-3075. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1054.htm

    [10] 裴书锋, 冯夏庭, 张建聪, 等. 高边坡坝基柱状节理玄武岩开挖卸荷时效松弛特性[J]. 岩土力学, 2018, 39(10): 3743-3754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810032.htm

    PEI Shufeng, FENG Xiating, ZHANG Jiancong, et al. Time-dependent relaxation characteristics of columnar jointed basalts in high-slope dam foundation during excavation[J]. Rock and Soil Mechanics, 2018, 39(10): 3743-3754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810032.htm

    [11] 张建聪, 江权, 郝宪杰, 等. 高应力下柱状节理玄武岩应力-结构型塌方机制分析[J]. 岩土力学, 2021, 42(9): 2556-2568, 2577. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109024.htm

    ZHANG Jiancong, JIANG Quan, HAO Xianjie, et al. Analysis of stress-structural collapse mechanism of columnar jointed basalt under high stress[J]. Rock and Soil Mechanics, 2021, 42(9): 2556-2568, 2577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109024.htm

    [12] 张春生, 侯靖, 徐建荣, 等. 白鹤滩水电站巨型地下洞室群围岩稳定分析与设计方法[M]. 北京: 中国水利水电出版社, 2019.

    ZHANG Chunsheng, HOU Jing, XU Jianrong, et al. Stability Analysis and Design Method of Surrounding Rock for Huge Undergound Caverns of Baihetan Hydropower Station[M]. Beijing: China WaterPower Press, 2019. (in Chinese)

    [13] 张春生, 侯靖, 褚卫江, 等. 岩体力学特性尺寸效应与工程实践[M]. 北京: 科学出版社, 2020.

    ZHANG Chunsheng, HOU Jing, CHU Weijiang, et al. Size Effect of Mechanical Properties of Rock Mass and Engineering Practice[M]. Beijing: Science Press, 2020. (in Chinese)

    [14] 单治钢, 倪卫达, 洪望兵, 等. 白鹤滩水电站枢纽区重大工程地质问题及对策研究[C]//2021年全国工程地质学术年会论文集, 青岛, 2021: 302-309.

    SHAN Zhigang, NI Weida, HONG Wangbing, et al. Major engineering geological problems and countermeasures of Baihetan hydropower station[C]//National Engineering Geology Conference 2021, Qingdao, 2021: 302-309. (in Chinese)

    [15] 徐建荣, 赖道平, 吴关叶, 等. 适应柱状节理玄武岩坝基的特高拱坝结构研究[J]. 水力发电学报, 2021, 40(3): 155-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202103016.htm

    XU Jianrong, LAI Daoping, WU Guanye, et al. Study on the super high arch dam structure adapting to the columnar basalt base[J]. Journal of Hydroelectric Engineering, 2021, 40(3): 155-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202103016.htm

    [16] 孟国涛, 樊义林, 江亚丽, 等. 白鹤滩水电站巨型地下洞室群关键岩石力学问题与工程对策研究[J]. 岩石力学与工程学报, 2016, 35(12): 2549-2560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm

    MENG Guotao, FAN Yilin, JIANG Yali, et al. Key rock mechanical problems and measures for huge caverns of Baihetan hydropower plant[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2549-2560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm

    [17] 唐君, 邓雨露, 陈翔. 白鹤滩水电站左岸尾水调压室穹顶开挖技术创新应用[J]. 水利水电技术, 2017, 48(增刊2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ2017S2001.htm

    (TANG Jun, DENG Yulu, CHEN Xiang. Application of innovation on technology for vault excavation of left-bank tailrace surge chamber of Baihetan Hydropower Station[J]. Water Resources and Hydropower Engineering, 2017, 48(S2): 1-6. (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ2017S2001.htm

    [18]

    JIANG Q, FENG X T, HATZOR Y H, et al. Mechanical anisotropy of columnar jointed basalts: an example from the Baihetan hydropower station, China[J]. Engineering Geology, 2014, 175: 35-45.

    [19] 肖维民, 邓荣贵, 付小敏, 等. 单轴压缩条件下柱状节理岩体变形和强度各向异性模型试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 957-963. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405011.htm

    XIAO Weimin, DENG Ronggui, FU Xiaomin, et al. Model experiments on deformation and strength anisotropy of columnar jointed rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 957-963. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405011.htm

    [20] 巢志明, 王环玲, 徐卫亚, 等. 柱状节理岩体渗透性模型试验研究[J]. 岩土工程学报, 2016, 38(8): 1407-1416. doi: 10.11779/CJGE201608007

    CHAO Zhiming, WANG Huanling, XU Weiya, et al. Model tests on permeability of columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1407-1416. (in Chinese) doi: 10.11779/CJGE201608007

    [21] 王鹏, 洪望兵, 宋刚. 柱状节理玄武岩松弛圈尺寸效应及地应力影响[J]. 岩土工程学报, 2018, 40(1): 139-146. doi: 10.11779/CJGE201801014

    WANG Peng, HONG Wangbing, SONG Gang. Influences of size effect and in situ stress of columnar jointed basalt relaxation zone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 139-146. (in Chinese) doi: 10.11779/CJGE201801014

    [22]

    FAN Q X, WANG Z L, XU J R, et al. Study on deformation and control measures of columnar jointed basalt for Baihetan super‑high arch dam foundation[J]. Rock Mechanics and Rock Engineering, 2018, 51: 2569-2595.

    [23] 张春生, 徐建荣, 吉华, 等. 白鹤滩水电站柱状节理玄武岩力学特性及松弛控制[J]. 岩石力学与工程学报, 2022, 41(7): 1297-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202207001.htm

    ZHANG Chunsheng, XU Jianrong, JI Hua, et al. Mechanical characteristics and relax control of columnar jointed basalt at Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(7): 1297-1309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202207001.htm

    [24] 江权, 冯夏庭, 徐鼎平, 等. 基于围岩片帮形迹的宏观地应力估计方法探讨[J]. 岩土力学, 2011, 32(5): 1452-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105026.htm

    JIANG Quan, FENG Xiating, XU Dingping, et al. Evaluation method of general geostress based on spalling features of wall rock[J]. Rock and Soil Mechanics, 2011, 32(5): 1452-1459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105026.htm

图(18)  /  表(2)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  31
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 网络出版日期:  2023-03-05
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回