Evolution of swelling pressure properties of bentonite-sand-graphite buffer materials under action of temperature and salt/alkali
-
摘要: 缓冲材料是核废料等高放废物地质处置库的最后一道工程屏障,要想科学合理地评估缓冲材料的实际工作性能,需对温度场和化学场作用下非饱和缓冲材料的膨胀特性有清晰的认识。以膨润土-砂-石墨缓冲材料(BSG)为硏究对象,基于自主研发的膨胀力试验装置,系统研究了温度、化学溶液对BSG混合物的膨胀力的影响。结果表明:高温和化学溶液降低膨胀力。阳离子类型的影响通过其化学活性的差异来解释。Ca2+离子具有比Na+离子更高的交换容量。温度对膨胀力的影响超过了阳离子类型,在室温条件下,加入CaCl2溶液的BSG混合物的膨胀力高于加入NaCl溶液的,而高温下规律则相反。随着NaOH溶液pH值的增加,膨胀力减小。在较高的温度下,下降速率取决于NaOH溶液pH值。高浓度的OH-有利于双层膨胀和土体结构重排,不同浓度的NaOH溶液对膨胀力的影响表现为Na+和OH-的相互作用。土体结构重新排列引起的双层膨胀力的增加和膨胀力的降低分别由双层厚度的减小和蒙脱石和硅酸盐矿物的溶解控制。
-
关键词:
- 膨胀土-砂-石墨混合物 /
- 膨胀力 /
- 温度 /
- 盐溶液 /
- 碱溶液
Abstract: The buffer materials are the last engineering barrier for the repository of high-level radioactive wastes. It is necessary to have a deep understanding of the swelling characteristics of unsaturated buffer materials under the action of temperature and chemical fields. The bentonite-sand-graphite (BSG) buffer materials are taken as the research object. Based on the self-developed swelling pressure test devices, the influences of temperature and chemical solution on the swelling pressure of the BSG mixture are systematically studied. The results show that the high temperature and chemical solution reduce the swelling pressure. The influences of cation type are explained by the difference of its chemical activity. Ca2+ has higher exchange capacity than Na+. The influences of temperature on the swelling pressure are more than those of cation type. At room temperature, the swelling pressure of the BSG mixture with CaCl2 solution is higher than that with NaCl solution, while the rule is opposite at high temperature. The swelling pressure decreases with the increase of pH value of NaOH solution. At higher temperatures, the rate of decline depends on the pH of the NaOH solution. High OH- concentration is conducive to double-layer swelling and rearrangement of soil structure. The influences of NaOH solution with different concentrations on the swelling pressure are shown by the interaction of Na+and OH-. The increase and decrease of the double-layer swelling pressure caused by the rearrangement of soil structure are controlled by the decrease of the double-layer thickness and the dissolution of montmorillonite and silicate minerals, respectively.-
Keywords:
- bentonite-sand-graphite mixture /
- swelling pressure /
- temperature /
- salt solution /
- alkali solution
-
-
表 1 石英砂的物理特性
Table 1 Physical parameters of sand
土体基本性质 数值 限制粒径D60/mm 0.37 中值粒径D50/mm 0.35 有效粒径D10/mm 0.31 不均匀系数 Cu 1.12 曲率系数Cc 0.95 密度ρ/(g·cm-3) 1.40 ρdmax/(g·cm-3) 1.69 ρdmin/(g·cm-3) 1.35 -
[1] PUSCH R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(2): 153-157. doi: 10.13182/NT79-A32305
[2] 张虎元, 崔素丽, 刘吉胜, 等. 混合型缓冲回填材料膨胀力试验研究[J]. 岩土力学, 2010, 31(10): 3087-3095. doi: 10.16285/j.rsm.2010.10.024 ZHANG Huyuan, CUI Suli, LIU Jisheng, et al. Experimental study of swelling pressure of compacted bentonite-sand mixture[J]. Rock and Soil Mechanics, 2010, 31(10): 3087-3095. (in Chinese) doi: 10.16285/j.rsm.2010.10.024
[3] 李昆鹏, 陈永贵, 叶为民, 等. 高压实膨润土孔隙结构特征研究进展[J]. 岩土工程学报, 2022, 44(3): 399-408. doi: 10.11779/CJGE202203001 LI Kunpeng, CHEN Yonggui, YE Weimin, et al. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. (in Chinese) doi: 10.11779/CJGE202203001
[4] LIU X Y, CAI G J, LIU L L, et al. Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository[J]. International Journal of Heat and Mass Transfer, 2019, 141: 981-994. doi: 10.1016/j.ijheatmasstransfer.2019.07.015
[5] LIU X Y, CONGRESS S S C, CAI G J, et al. Evaluating the thermal performance of unsaturated bentonite-sand-graphite as buffer material for waste repository using an improved prediction model[J]. Canadian Geotechnical Journal, 2023, 60(3): 301-320. doi: 10.1139/cgj-2021-0001
[6] LIU X Y, CONGRESS S S C, CAI G J, et al. Performance evaluation of soil mixtures treated with graphite and used as barrier fill material for high-level radioactive waste repository[J]. Acta Geotechnica, 2021, 16(5): 1487-1507. doi: 10.1007/s11440-020-01102-8
[7] LIU X Y, CAI G J, CONGRESS S S C, et al. Thermomechanical analysis of fiber-bentonite-based mixtures as buffer material in an engineered nuclear barrier[J]. Journal of Materials in Civil Engineering, 2021, 33(2): 04020464. doi: 10.1061/(ASCE)MT.1943-5533.0003515
[8] VILLAR M V, LLORET A. Influence of dry density and water content on the swelling of a compacted bentonite[J]. Applied Clay Science, 2008, 39(1/2): 38-49.
[9] 孙德安, 张龙. 盐溶液饱和高庙子膨润土膨胀特性及预测[J]. 岩土力学, 2013, 34(10): 2790-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1014.htm SUN Dean, ZHANG Long. Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013, 34(10): 2790-2795. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1014.htm
[10] 项国圣, 徐永福, 陈涛, 等. 盐溶液中膨润土膨胀变形的分形模型[J]. 岩土力学, 2017, 38(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701011.htm XIANG Guosheng, XU Yongfu, CHEN Tao, et al. Fractal model for swelling deformation of bentonite in salt solution[J]. Rock and Soil Mechanics, 2017, 38(1): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701011.htm
[11] YE W M, CUI Y J, QIAN L X, et al. An experimental study of the water transfer through confined compacted GMZ bentonite[J]. Engineering Geology, 2009, 108(3/4): 169-176.
[12] EROL S, FRANÇOIS B. Efficiency of various grouting materials for borehole heat exchangers[J]. Applied Thermal Engineering, 2014, 70(1): 788-799. doi: 10.1016/j.applthermaleng.2014.05.034
[13] LAIRD D A. Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, 34(1/2/3/4): 74-87.
[14] BAUER A. Smectite transformation in high molar KOH solutions[J]. Clay Minerals, 1999, 34(2): 259-273. doi: 10.1180/000985599546226
[15] YE W M, LAI X L, LIU Y, et al. Ageing effects on swelling behaviour of compacted GMZ01 bentonite[J]. Nuclear Engineering and Design, 2013, 265: 262-268. doi: 10.1016/j.nucengdes.2013.06.028
[16] BAG R. Coupled Thermo-hydro-mechanical-chemical Behaviour of MX80 Bentonite in Geotechnical Applications [D]. Cardiff: Cardiff University, 2011.
[17] ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80. doi: 10.1016/j.enggeo.2013.09.001
[18] HERBERT H J, KASBOHM J, SPRENGER H, et al. Swelling pressures of MX-80 bentonite in solutions of different ionic strength[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: S327-S342.
[19] SANDEN T, NILSSON U, ANDERSSON L. Investigation of parameters influencing bentonite block quality[J]. Laboratory investigation SKB P-16-06, Svensk Kärnbränslehantering AB, 2016,
[20] UCHIKAWA H, HANEHARA S, SAWAKI D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture[J]. Cement and Concrete Research, 1997, 27(1): 37-50.
[21] GANGADHARA RAO M, SINGH D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773.
[22] OLPHEN H. Forces between suspended bentonite particles part Ⅱ: calcium bentonite[J]. Clays and Clay Minerals, 1957, 6(1): 196-206.
[23] LIU L N, CHEN Y G, YE W M, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH- anions[J]. Applied Clay Science, 2018, 161: 334-342.
[24] AMRAM K, GANOR J. The combined effect of pH and temperature on smectite dissolution rate under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2535-2546.
[25] GATES W P, BOUAZZA A. Bentonite transformations in strongly alkaline solutions[J]. Geotextiles and Geomembranes, 2010, 28(2): 219-225.
-
其他相关附件