Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

温度和盐/碱作用下膨润土-砂-石墨缓冲材料膨胀力性能演化

刘晓燕, 刘路路, 蔡国军, 刘松玉

刘晓燕, 刘路路, 蔡国军, 刘松玉. 温度和盐/碱作用下膨润土-砂-石墨缓冲材料膨胀力性能演化[J]. 岩土工程学报, 2023, 45(12): 2463-2471. DOI: 10.11779/CJGE20220821
引用本文: 刘晓燕, 刘路路, 蔡国军, 刘松玉. 温度和盐/碱作用下膨润土-砂-石墨缓冲材料膨胀力性能演化[J]. 岩土工程学报, 2023, 45(12): 2463-2471. DOI: 10.11779/CJGE20220821
LIU Xiaoyan, LIU Lulu, CAI Guojun, LIU Songyu. Evolution of swelling pressure properties of bentonite-sand-graphite buffer materials under action of temperature and salt/alkali[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2463-2471. DOI: 10.11779/CJGE20220821
Citation: LIU Xiaoyan, LIU Lulu, CAI Guojun, LIU Songyu. Evolution of swelling pressure properties of bentonite-sand-graphite buffer materials under action of temperature and salt/alkali[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2463-2471. DOI: 10.11779/CJGE20220821

温度和盐/碱作用下膨润土-砂-石墨缓冲材料膨胀力性能演化  English Version

基金项目: 

国家杰出青年基金项目 42225206

国家自然科学基金项目 42207180

国家自然科学基金项目 42302320

江苏省卓越博士后计划 2022ZB526

中国博士后科学基金面上项目 2022M723383

中国博士后科学基金面上项目 2023M733746

江苏省自然科学基金青年项目 BK20221136

详细信息
    作者简介:

    刘晓燕(1990—),女,山东潍坊人,讲师,博士后,主要从事非饱和土工程性质与能源岩土工程等方面的研究工作。E-mail: happyliuxiaoyan@163.com

    通讯作者:

    蔡国军, E-mail: focuscai@163.com

  • 中图分类号: TU43

Evolution of swelling pressure properties of bentonite-sand-graphite buffer materials under action of temperature and salt/alkali

  • 摘要: 缓冲材料是核废料等高放废物地质处置库的最后一道工程屏障,要想科学合理地评估缓冲材料的实际工作性能,需对温度场和化学场作用下非饱和缓冲材料的膨胀特性有清晰的认识。以膨润土-砂-石墨缓冲材料(BSG)为硏究对象,基于自主研发的膨胀力试验装置,系统研究了温度、化学溶液对BSG混合物的膨胀力的影响。结果表明:高温和化学溶液降低膨胀力。阳离子类型的影响通过其化学活性的差异来解释。Ca2+离子具有比Na+离子更高的交换容量。温度对膨胀力的影响超过了阳离子类型,在室温条件下,加入CaCl2溶液的BSG混合物的膨胀力高于加入NaCl溶液的,而高温下规律则相反。随着NaOH溶液pH值的增加,膨胀力减小。在较高的温度下,下降速率取决于NaOH溶液pH值。高浓度的OH-有利于双层膨胀和土体结构重排,不同浓度的NaOH溶液对膨胀力的影响表现为Na+和OH-的相互作用。土体结构重新排列引起的双层膨胀力的增加和膨胀力的降低分别由双层厚度的减小和蒙脱石和硅酸盐矿物的溶解控制。
    Abstract: The buffer materials are the last engineering barrier for the repository of high-level radioactive wastes. It is necessary to have a deep understanding of the swelling characteristics of unsaturated buffer materials under the action of temperature and chemical fields. The bentonite-sand-graphite (BSG) buffer materials are taken as the research object. Based on the self-developed swelling pressure test devices, the influences of temperature and chemical solution on the swelling pressure of the BSG mixture are systematically studied. The results show that the high temperature and chemical solution reduce the swelling pressure. The influences of cation type are explained by the difference of its chemical activity. Ca2+ has higher exchange capacity than Na+. The influences of temperature on the swelling pressure are more than those of cation type. At room temperature, the swelling pressure of the BSG mixture with CaCl2 solution is higher than that with NaCl solution, while the rule is opposite at high temperature. The swelling pressure decreases with the increase of pH value of NaOH solution. At higher temperatures, the rate of decline depends on the pH of the NaOH solution. High OH- concentration is conducive to double-layer swelling and rearrangement of soil structure. The influences of NaOH solution with different concentrations on the swelling pressure are shown by the interaction of Na+and OH-. The increase and decrease of the double-layer swelling pressure caused by the rearrangement of soil structure are controlled by the decrease of the double-layer thickness and the dissolution of montmorillonite and silicate minerals, respectively.
  • 图  1   膨润土、石英砂和石墨的粒度分布

    Figure  1.   Grain-size distribution curves of bentonite, quartz sand and graphite

    图  2   膨胀力实验装置

    Figure  2.   Test devices for swelling pressure

    图  3   不同盐溶液浓度条件下BSG混合物膨胀力变化

    Figure  3.   Variation of swelling pressure of BSG mixture under different salt solution concentrations

    图  4   不同pH值NaOH溶液下BSG混合物膨胀力的变化

    Figure  4.   Variation of swelling pressure of BSG mixture under NaOH solution with different pH

    图  5   NaOH溶液pH值对BSG混合物最大膨胀力的影响

    Figure  5.   Influences of pH value of NaOH solution on maximum swelling pressure of BSG mixture

    图  6   BSG混合物膨胀力-温度演化曲线

    Figure  6.   Evolution curves of swelling pressure-temperature of BSG mixture

    图  7   BSG混合物最大膨胀力-温度变化规律

    Figure  7.   Variation of maximum swelling pressure of BSG mixture under temperature

    图  8   温度-盐溶液共同作用下BSG混合物膨胀力变化

    Figure  8.   Variation of swelling pressure of BSG mixture under combined action of temperature and salt solution

    图  9   温度与盐溶液共同作用下BSG试样最大膨胀力变化

    Figure  9.   Variation of maximum swelling pressure of BSG mixture under combined action of temperature and salt solution

    图  10   温度与碱溶液共同作用下BSG混合物膨胀力变化

    Figure  10.   Variation of swelling pressure of BSG mixture under combined action of temperature and alkali solution

    图  11   恒定体积下膨润土膨胀过程及微观结构概念图[22]

    Figure  11.   Conceptual diagram of swelling process of bentonite and microstructure at constant volume[22]

    图  12   扩散双层收缩示意图[23]

    Figure  12.   Schematic diagram of diffusion double-layer shrinkage[23]

    图  13   NaOH溶液渗透BSG混合物的微观结构(pH=14)

    Figure  13.   Microstructure of BSG mixture permeated by NaOH solution (pH=14)

    表  1   石英砂的物理特性

    Table  1   Physical parameters of sand

    土体基本性质 数值
    限制粒径D60/mm 0.37
    中值粒径D50/mm 0.35
    有效粒径D10/mm 0.31
    不均匀系数 Cu 1.12
    曲率系数Cc 0.95
    密度ρ/(g·cm-3) 1.40
    ρdmax/(g·cm-3) 1.69
    ρdmin/(g·cm-3) 1.35
    下载: 导出CSV
  • [1]

    PUSCH R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(2): 153-157. doi: 10.13182/NT79-A32305

    [2] 张虎元, 崔素丽, 刘吉胜, 等. 混合型缓冲回填材料膨胀力试验研究[J]. 岩土力学, 2010, 31(10): 3087-3095. doi: 10.16285/j.rsm.2010.10.024

    ZHANG Huyuan, CUI Suli, LIU Jisheng, et al. Experimental study of swelling pressure of compacted bentonite-sand mixture[J]. Rock and Soil Mechanics, 2010, 31(10): 3087-3095. (in Chinese) doi: 10.16285/j.rsm.2010.10.024

    [3] 李昆鹏, 陈永贵, 叶为民, 等. 高压实膨润土孔隙结构特征研究进展[J]. 岩土工程学报, 2022, 44(3): 399-408. doi: 10.11779/CJGE202203001

    LI Kunpeng, CHEN Yonggui, YE Weimin, et al. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. (in Chinese) doi: 10.11779/CJGE202203001

    [4]

    LIU X Y, CAI G J, LIU L L, et al. Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository[J]. International Journal of Heat and Mass Transfer, 2019, 141: 981-994. doi: 10.1016/j.ijheatmasstransfer.2019.07.015

    [5]

    LIU X Y, CONGRESS S S C, CAI G J, et al. Evaluating the thermal performance of unsaturated bentonite-sand-graphite as buffer material for waste repository using an improved prediction model[J]. Canadian Geotechnical Journal, 2023, 60(3): 301-320. doi: 10.1139/cgj-2021-0001

    [6]

    LIU X Y, CONGRESS S S C, CAI G J, et al. Performance evaluation of soil mixtures treated with graphite and used as barrier fill material for high-level radioactive waste repository[J]. Acta Geotechnica, 2021, 16(5): 1487-1507. doi: 10.1007/s11440-020-01102-8

    [7]

    LIU X Y, CAI G J, CONGRESS S S C, et al. Thermomechanical analysis of fiber-bentonite-based mixtures as buffer material in an engineered nuclear barrier[J]. Journal of Materials in Civil Engineering, 2021, 33(2): 04020464. doi: 10.1061/(ASCE)MT.1943-5533.0003515

    [8]

    VILLAR M V, LLORET A. Influence of dry density and water content on the swelling of a compacted bentonite[J]. Applied Clay Science, 2008, 39(1/2): 38-49.

    [9] 孙德安, 张龙. 盐溶液饱和高庙子膨润土膨胀特性及预测[J]. 岩土力学, 2013, 34(10): 2790-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1014.htm

    SUN Dean, ZHANG Long. Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013, 34(10): 2790-2795. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1014.htm

    [10] 项国圣, 徐永福, 陈涛, 等. 盐溶液中膨润土膨胀变形的分形模型[J]. 岩土力学, 2017, 38(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701011.htm

    XIANG Guosheng, XU Yongfu, CHEN Tao, et al. Fractal model for swelling deformation of bentonite in salt solution[J]. Rock and Soil Mechanics, 2017, 38(1): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701011.htm

    [11]

    YE W M, CUI Y J, QIAN L X, et al. An experimental study of the water transfer through confined compacted GMZ bentonite[J]. Engineering Geology, 2009, 108(3/4): 169-176.

    [12]

    EROL S, FRANÇOIS B. Efficiency of various grouting materials for borehole heat exchangers[J]. Applied Thermal Engineering, 2014, 70(1): 788-799. doi: 10.1016/j.applthermaleng.2014.05.034

    [13]

    LAIRD D A. Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, 34(1/2/3/4): 74-87.

    [14]

    BAUER A. Smectite transformation in high molar KOH solutions[J]. Clay Minerals, 1999, 34(2): 259-273. doi: 10.1180/000985599546226

    [15]

    YE W M, LAI X L, LIU Y, et al. Ageing effects on swelling behaviour of compacted GMZ01 bentonite[J]. Nuclear Engineering and Design, 2013, 265: 262-268. doi: 10.1016/j.nucengdes.2013.06.028

    [16]

    BAG R. Coupled Thermo-hydro-mechanical-chemical Behaviour of MX80 Bentonite in Geotechnical Applications [D]. Cardiff: Cardiff University, 2011.

    [17]

    ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80. doi: 10.1016/j.enggeo.2013.09.001

    [18]

    HERBERT H J, KASBOHM J, SPRENGER H, et al. Swelling pressures of MX-80 bentonite in solutions of different ionic strength[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: S327-S342.

    [19]

    SANDEN T, NILSSON U, ANDERSSON L. Investigation of parameters influencing bentonite block quality[J]. Laboratory investigation SKB P-16-06, Svensk Kärnbränslehantering AB, 2016,

    [20]

    UCHIKAWA H, HANEHARA S, SAWAKI D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture[J]. Cement and Concrete Research, 1997, 27(1): 37-50.

    [21]

    GANGADHARA RAO M, SINGH D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773.

    [22]

    OLPHEN H. Forces between suspended bentonite particles part Ⅱ: calcium bentonite[J]. Clays and Clay Minerals, 1957, 6(1): 196-206.

    [23]

    LIU L N, CHEN Y G, YE W M, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH- anions[J]. Applied Clay Science, 2018, 161: 334-342.

    [24]

    AMRAM K, GANOR J. The combined effect of pH and temperature on smectite dissolution rate under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2535-2546.

    [25]

    GATES W P, BOUAZZA A. Bentonite transformations in strongly alkaline solutions[J]. Geotextiles and Geomembranes, 2010, 28(2): 219-225.

图(13)  /  表(1)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  34
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回