Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming
-
摘要: 轴对称Mohr-Coulomb准则屈服面的角点问题导致其在数值计算中存在困难,如何高效处理该屈服准则一直是极限分析下限有限元法的重要内容。首先,引入完全塑性假定将轴对称Mohr-Coulomb准则转化为1组不等式约束和3个线性等式约束;然后,将不等式约束直接转化为二阶锥约束,避免了对角点进行光滑近似处理;最后,将基于Mohr-Coulomb准则的轴对称极限分析下限有限元计算模型转化为具有较高计算效率的二阶锥规划数学优化模型。极限分析下限有限元法采用的线性应力单元难以精确模拟破坏区域的应力变化,单元的分布形式对计算精度存在较大影响。因此提出一种基于单元应力的网格自适应加密策略,通过判断单元内节点应力接近屈服的程度,自动识别破坏区域待加密的单元,实现对破坏区域应力分布的精确模拟,进而能够以较少单元获得高精度下限解。通过分析圆形基础承载力及竖向锚板极限抗拔力等典型轴对称岩土工程稳定性问题,表明了所提方法具有较高计算效率及计算精度,具有一定的理论价值和应用前景。
-
关键词:
- 下限有限元 /
- 自适应加密 /
- 轴对称 /
- 二阶锥规划 /
- Mohr-Coulomb准则
Abstract: The axisymmetric Mohr Coulomb yield surfaces have edges and corners in the three-dimensional stress space, which leads to difficulties in numerical calculation. Therefore, how to deal with the axisymmetric Mohr-Coulomb criterion efficiently has always been an important research content of the lower bound finite element limit analysis (LB-FELA) method. Firstly, the axisymmetric Mohr-Coulomb criterion is transformed into a set of inequality constraints and three linear equality constraints by introducing the complete plasticity assumption. Then, the inequality constraints are directly transformed into the second-order cone ones, which avoids the smooth approximation of numerical singularities. Finally, the axisymmetric LB-FELA model based on the Mohr Coulomb criterion is transformed into a mathematical optimization one of the second-order cone programming. The linear stress element adopted by the axisymmetric LB-FELA cannot accurately simulate the stress change in the failure region. Therefore, the mesh distribution form has a great impact on the calculation accuracy of the LB-FELA. To solve this problem, an adaptive mesh refinement strategy based on the element yield residual is proposed. By judging the degree of the node stress in the element close to the yield, the elements can be automatically identified and refined in the failure area. By analyzing the stability problems of typical axisymmetric geotechnical projects such as the bearing capacity of circular foundation and the ultimate uplift capacity of vertical anchor plate, it is shown that the proposed method has high calculation efficiency and accuracy, and it has certain theoretical value and application prospect. -
-
图 8 计算结果与文献结果对比
Figure 8. Comparison between present results and those available in Reference[1]
表 1 计算效率对比(地基与基础直径接触粗糙)
Table 1 Comparison of calculation efficiencies between present method and those available in Reference [18]
方法 单元数 节点数 优化变量数 锥约束数量 线性约束数量 承载力系数 计算误差/% 计算时长/s 承载力系数 计算误差/% 计算时长/s 本文方法 22846 11592 479766 68538 593794 7.73 3.37 31 22.35 3.74 37 文献[18] 22846 11592 890994 205614 799408 7.74 3.25 68 22.37 3.67 87 表 2 Nc计算结果与文献结果对比
Table 2 Comparison between present results and those available in references
本文方法 Kumar等[5] Zhang等[25] Martin等[8] 5 8.03(7.41) 8.00(7.31) 8.00(7.47) 8.06(7.43) 10 11.04(9.94) 10.99(9.78) 11.16(10.05) 11.09(9.99) 15 15.76(13.86) 15.66(13.51) 16.03(13.99) 15.84(13.87) 20 23.53(19.94) 23.22(19.38) 24.02(20.32) 23.67(20.07) 25 36.98(30.25) 36.17(29.06) 37.96(30.97) 37.31(30.52) 30 61.92(48.78) 61.48(47.10) 64.27(50.48) 62.70(49.29) 35 112.07(84.59) 112.47(81.47) 117.99(89.01) 113.99(85.88) 注:括号外为接触粗糙时地基承载力系数,括号内为接触光滑时的承载力系数;自适应加密次数均为15次。 -
[1] KHATRI V N, KUMAR J. Vertical uplift resistance of circular plate anchors in clays under undrained condition[J]. Computers and Geotechnics, 2009, 36(8): 1352-1359. doi: 10.1016/j.compgeo.2009.06.008
[2] KHATRI V N, KUMAR J. Bearing capacity factor Nc under ϕ=0 condition for piles in clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(9): 1203-1225. doi: 10.1002/nag.763
[3] PASTOR J, TURGEMAN S. Limit analysis in axisymmetrical problems: numerical determination of complete statical solutions[J]. International Journal of Mechanical Sciences, 1982, 24(2): 95-117. doi: 10.1016/0020-7403(82)90041-8
[4] COX A D. Axially-symmetric plastic deformation in soils—Ⅱ. Indentation of ponderable soils[J]. International Journal of Mechanical Sciences, 1962, 4(5): 371-380. doi: 10.1016/S0020-7403(62)80024-1
[5] KUMAR J, KHATRI V N. Bearing capacity factors of circular foundations for a general c-ϕ soil using lower bound finite elements limit analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(3): 393-405. doi: 10.1002/nag.900
[6] KUMAR J, CHAKRABORTY D. Stability numbers for an unsupported vertical circular excavation in c-ϕ soil[J]. Computers and Geotechnics, 2012, 39: 79-84. doi: 10.1016/j.compgeo.2011.08.002
[7] KUMAR J, CHAKRABORTY M. Upper-bound axisymmetric limit analysis using the mohr-coulomb yield criterion, finite elements, and linear optimization[J]. Journal of Engineering Mechanics, 2014, 140(12): 06014012. doi: 10.1061/(ASCE)EM.1943-7889.0000820
[8] MARTIN C. M. User guide for ABC: Analysis of bearing capacity, Version 1.0[R]. Oxford: Department of Engineering Science, University of Oxford, 2004.
[9] 孙锐, 阳军生, 赵乙丁, 等. 基于Drucker-Prager准则的高阶单元自适应上限有限元研究[J]. 岩土工程学报, 2020, 42(2): 398-404. doi: 10.11779/CJGE202002022 SUN Rui, YANG Junsheng, ZHAO Yiding, et al. Upper bound adaptive finite element method with higher-order element based on Drucker-Prager yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 398-404. (in Chinese) doi: 10.11779/CJGE202002022
[10] 孙锐, 杨峰, 阳军生, 等. 基于二阶锥规划与高阶单元的自适应上限有限元研究[J]. 岩土力学, 2020, 41(2): 687-694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002040.htm SUN Rui, YANG Feng, YANG Junsheng, et al. Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element[J]. Rock and Soil Mechanics, 2020, 41(2): 687-694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002040.htm
[11] MAKRODIMOPOULOS A, MARTIN C M. Lower bound limit analysis of cohesive-frictional materials using second-order cone programming[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 604-634. doi: 10.1002/nme.1567
[12] MAKRODIMOPOULOS A, MARTIN C M. Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(6): 835-865. doi: 10.1002/nag.567
[13] 杨昕光, 周密, 张伟, 等. 基于二阶锥规划的边坡稳定上限有限元分析[J]. 长江科学院院报, 2016, 33(12): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201612013.htm YANG Xinguang, ZHOU Mi, ZHANG Wei, et al. Upper bound finite element limit analysis of slope stability using second-order cone programming[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(12): 61-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201612013.htm
[14] 杨昕光, 迟世春. 土石坝坡极限抗震能力的下限有限元法[J]. 岩土工程学报, 2013, 35(7): 1202-1209. http://www.cgejournal.com/cn/article/id/15099 YANG Xinguang, CHI Shichun. Lower bound FEM for limit aseismic capability of earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1202-1209. (in Chinese) http://www.cgejournal.com/cn/article/id/15099
[15] 刘锋涛, 张绍发, 戴北冰, 等. 边坡稳定分析刚体有限元上限法的锥规划模型[J]. 岩土力学, 2019, 40(10): 4084-4091, 4100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910044.htm LIU Fengtao, ZHANG Shaofa, DAI Beibing, et al. Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming[J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091, 4100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910044.htm
[16] 周锡文, 刘锋涛, 戴北冰, 等. 基于混合常应力-光滑应变单元的极限分析方法[J]. 岩土力学, 2022, 43(6): 1660-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206019.htm ZHOU Xiwen, LIU Fengtao, DAI Beibing, et al. Limit analysis method based on mixed constant stress-smoothed strain element[J]. Rock and Soil Mechanics, 2022, 43(6): 1660-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206019.htm
[17] 杨昕光, 迟世春. 基于非线性破坏准则的土坡稳定有限元上限分析[J]. 岩土工程学报, 2013, 35(9): 1759-1764. http://www.cgejournal.com/cn/article/id/15293 YANG Xinguang, CHI Shichun. Upper bound FEM analysis of slope stability using a nonlinear failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1759-1764. (in Chinese) http://www.cgejournal.com/cn/article/id/15293
[18] TANG C, TOH K C, PHOON K K. Axisymmetric lower-bound limit analysis using finite elements and second-order cone programming[J]. Journal of Engineering Mechanics, 2014, 140(2): 268-278.
[19] LYAMIN A V, SLOAN S W, KRABBENHØFT K, et al. Lower bound limit analysis with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1961-1974.
[20] ZHANG R, CHEN G H, ZOU J F, et al. Study on roof collapse of deep circular cavities in jointed rock masses using adaptive finite element limit analysis[J]. Computers and Geotechnics, 2019, 111: 42-55.
[21] 李大钟, 郑榕明, 王金安, 等. 自适应有限元极限分析及岩土工程中的应用[J]. 岩土工程学报, 2013, 35(5): 922-929. http://www.cgejournal.com/cn/article/id/15048 LI Dazhong, CHENG Yungming, WANG Jinan, et al. Application of finite-element-based limit analysis with mesh adaptation in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 922-929. (in Chinese) http://www.cgejournal.com/cn/article/id/15048
[22] ZHANG R, LI L A, ZHAO L H, et al. An adaptive remeshing procedure for discontinuous finite element limit analysis[J]. International Journal for Numerical Methods in Engineering, 2018: 287-307.
[23] MUÑOZ J J, BONET J, HUERTA A, et al. Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading[J]. International Journal for Numerical Methods in Engineering, 2009, 77(4): 471-501.
[24] SUN R, YANG J S, ZHAO Y D, et al. Upper bound finite element limit analysis method with discontinuous quadratic displacement fields and remeshing in non-homogeneous clays[J]. Archive of Applied Mechanics, 2021, 91(3): 1007-1020.
[25] ZHANG J, GAO Y F, FENG T G, et al. Upper-bound finite-element analysis of axisymmetric problems using a mesh adaptive strategy[J]. Computers and Geotechnics, 2018, 102: 148-154.
[26] LIU F Q, WANG J H, ZHANG L L. Analytical solution of general axisymmetric active earth pressure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(4): 551-565.
[27] LIU F Q, WANG J H. A generalized slip line solution to the active earth pressure on circular retaining walls[J]. Computers and Geotechnics, 2008, 35(2): 155-164.
[28] MOSEK ApS. The MOSEK C optimizer API manual, version10.1[EB/OL]. 2023-10-01. https://www.mosek.com/.
-
其他相关附件