• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

反应参数衰减时复合衬垫有机污染物运移半解析模型

蔡佩孚, 丁昊, 杨旦荻, 石阳辉, 谢海建, 金爱民, 陈赟

蔡佩孚, 丁昊, 杨旦荻, 石阳辉, 谢海建, 金爱民, 陈赟. 反应参数衰减时复合衬垫有机污染物运移半解析模型[J]. 岩土工程学报, 2023, 45(8): 1684-1692. DOI: 10.11779/CJGE20220773
引用本文: 蔡佩孚, 丁昊, 杨旦荻, 石阳辉, 谢海建, 金爱民, 陈赟. 反应参数衰减时复合衬垫有机污染物运移半解析模型[J]. 岩土工程学报, 2023, 45(8): 1684-1692. DOI: 10.11779/CJGE20220773
CAI Peifu, DING Hao, YANG Dandi, SHI Yanghui, XIE Haijian, JIN Aimin, CHEN Yun. Semi-analytical model for transport of organic contaminants in composite liners considering attenuation of reaction parameters[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1684-1692. DOI: 10.11779/CJGE20220773
Citation: CAI Peifu, DING Hao, YANG Dandi, SHI Yanghui, XIE Haijian, JIN Aimin, CHEN Yun. Semi-analytical model for transport of organic contaminants in composite liners considering attenuation of reaction parameters[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1684-1692. DOI: 10.11779/CJGE20220773

反应参数衰减时复合衬垫有机污染物运移半解析模型  English Version

基金项目: 

国家重点研发计划课题 2018YFC1802303

浙江省2022年度“尖兵”“领雁”研发攻关计划项目 2022C03051

国家自然科学基金项目 41977223

国家自然科学基金项目 41931289

浙江省杰出青年科学基金项目 LR20E080002

详细信息
    作者简介:

    蔡佩孚(1998—),男,硕士研究生,主要从事环境土工等方面的研究工作。E-mail: 22034159@zju.edu.cn

    通讯作者:

    谢海建, E-mail: xiehaijian@zju.edu.cn

  • 中图分类号: TU449

Semi-analytical model for transport of organic contaminants in composite liners considering attenuation of reaction parameters

  • 摘要: 为了研究土工膜下卧黏土衬垫中有机污染物的吸附与降解等反应参数随深度衰减特性对复合衬垫防污性能的影响,将反应参数的衰减用具体函数表示,通过拉氏变换得到了有机污染物在复合衬垫中的一维运移半解析解。通过现场试验数据验证了该半解析模型。无量纲分析结果表明,压实黏土衬垫CCL中参数衰减较快时(β=0.1),能使击穿时间缩短68%;当扩散和降解作用主导时(如Pe2≤1和Q≥10),衰减效应对通量和浓度影响能超过40%,但当对流作用占主导并且降解较弱时(如Pe2≥10和Q≤1),反应参数的衰减效应可以忽略。不考虑反应参数的衰减时,亲水性有机污染物和疏水性有机污染物的击穿浓度可分别低估近61%倍和37%。该解能更好地模拟现场监测数据,评估填埋场衬垫的有效性,可用于复合衬垫的设计和复杂数值模型的验证。
    Abstract: In order to investigate the influences of the attenuating characteristics of reaction parameters including adsorption and degradation in the clay liners under the geomembrane on the antifouling performances of composite liners, the attenuation of reaction parameters is expressed as a specific function. The one-dimensional semi-analytical solution for transport of organic contaminants in composite liners is obtained by the Laplace transformation. The semi-analytical model is validated through the field test data. The results of dimensionless analysis show that when the reaction parameters in CCL decrease rapidly with the increase of depth (e.g, β=0.1), the breakthrough time can be reduced by 68%. The bottom concentrations and fluxes can be reduced by 40% when the diffusion and degradation dominate transport of contaminants (e.g., Pe2≤1 and Q≥10). The attenuation effects of the reaction parameters can be ignored when the advection is the dominant process (e.g., Pe2≥10 and Q≤1). Without considering the attenuation of reaction parameters, the breakthrough concentration of hydrophilic organic contaminants and hydrophobic organic contaminants can be underestimated by 61% and 37% respectively. The field monitoring data can be better fitted by the proposed model, and it can be used to evaluate the effectiveness of landfill liners. It can also be used for the design of composite liners and the verification of complex numerical models.
  • 图  1   有机污染物通过土工膜有缺陷复合衬垫的一维运移模型

    Figure  1.   One-dimensional transport model for organic pollutants through composite liners with geomembrane defects

    图  2   本文解析解计算结果与FEA计算结果的比较

    Figure  2.   Comparison of calculated results between proposed analytical solution and FEA

    图  3   (a)衰减函数与现场SOM浓度试验数据的比较;(b)本文解与现场COD浓度试验数据的比较

    Figure  3.   (a) Comparison between attenuation function and field test data of SOM concentration; (b) Comparison between proposed analytical solution and filed test data of COD concentration

    图  4   击穿曲线与无量纲参数Pe2β的关系

    Figure  4.   Breakthrough curves with different dimensionless parameters Pe2 and β

    图  5   击穿曲线与无量纲参数Qβ的关系

    Figure  5.   Breakthrough curves with different dimensionless parameters Q and β

    图  6   半无限边界无量纲浓度击穿曲线与无量纲参数Pe1W的关系

    Figure  6.   Dimensionless concentration breakthrough curves of semi-infinite bottom boundary with different dimensionless parameters Pe1 and W

    表  1   甲苯在各介质中的参数取值

    Table  1   Values of parameters of toluene in GM and CCL

    介质 厚度/
    m
    孔隙率 分配系数 渗透系数/
    (m·s-1)
    Kd/
    (mL·g-1)
    干密度/
    (g·cm-3)
    土工膜 0.0015 112
    压实
    黏土
    0.75 0.35 1.0×10-9 1.86 1.66
    下载: 导出CSV
  • [1] 陈云敏, 谢海建, 张春华. 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    CHEN Yunmin, XIE Haijian, ZHANG Chunhua. Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    [2]

    SHU S, ZHU W, WANG S W, et al. Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: Centrifuge and numerical modeling approach[J]. Science of the Total Environment, 2018, 612: 1123-1131. doi: 10.1016/j.scitotenv.2017.08.185

    [3]

    DU Y J, SHEN S L, LIU S Y, et al. Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems[J]. Geotextiles and Geomembranes, 2009, 27(3): 232-239. doi: 10.1016/j.geotexmem.2008.11.007

    [4]

    KALBE U, MÜLLER W W, BERGER W, et al. Transport of organic contaminants within composite liner systems[J]. Applied Clay Science, 2002, 21(1/2): 67-76.

    [5]

    FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 590-601. doi: 10.1061/(ASCE)1090-0241(2002)128:7(590)

    [6]

    PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120: 448-458. doi: 10.1016/j.wasman.2020.10.004

    [7]

    YAN H X, WU J W, THOMAS H R, et al. Analytical model for coupled consolidation and diffusion of organic contaminant transport in triple landfill liners[J]. Geotextiles and Geomembranes, 2021, 49(2): 489-499. doi: 10.1016/j.geotexmem.2020.10.019

    [8]

    XIE H J, DING H, YAN H X, et al. A semi-analytical solution to organic contaminants transport through composite liners considering a single crack in CCL[J]. Environmental Science and Pollution Research, 2022, 29(27): 40768-40780. doi: 10.1007/s11356-021-18171-1

    [9]

    YU C, LIU J F, MA J J, et al. Study on transport and transformation of contaminant through layered soil with large deformation[J]. Environmental Science and Pollution Research, 2018, 25(13): 12764-12779. doi: 10.1007/s11356-018-1325-7

    [10]

    FLURY M, WU Q J, WU L S, et al. Analytical solution for solute transport with depth-dependent transformation or sorption coefficients[J]. Water Resources Research, 1998, 34(11): 2931-2937. doi: 10.1029/98WR02299

    [11]

    VRYZAS Z, PAPADAKIS E N, ORIAKLI K, et al. Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities[J]. Chemosphere, 2012, 89(11): 1330-1338. doi: 10.1016/j.chemosphere.2012.05.087

    [12]

    ZHAN T L T, GUAN C, XIE H J, et al. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation[J]. The Science of the Total Environment, 2014, 470/471: 290-298. doi: 10.1016/j.scitotenv.2013.09.081

    [13]

    BREZA-BORUTA B, LEMANOWICZ J, BARTKOWIAK A. Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites[J]. Environmental Earth Sciences, 2016, 75(3): 201. doi: 10.1007/s12665-015-4955-9

    [14]

    REGADÍO M, RUIZ A I, DE SOTO I S, et al. Pollution profiles and physicochemical parameters in old uncontrolled landfills[J]. Waste Management, 2012, 32(3): 482-497. doi: 10.1016/j.wasman.2011.11.008

    [15]

    SONG L Y, WANG Y Q, ZHAO H P, et al. Composition of bacterial and archaeal communities during landfill refuse decomposition processes[J]. Microbiological Research, 2015, 181: 105-111. doi: 10.1016/j.micres.2015.04.009

    [16]

    DONG J, DING L J, WANG X, et al. Vertical profiles of community abundance and diversity of anaerobic methanotrophic Archaea (ANME) and bacteria in a simple waste landfill in North China[J]. Applied Biochemistry and Biotechnology, 2015, 175(5): 2729-2740. doi: 10.1007/s12010-014-1456-3

    [17]

    GAO G Y, FU B J, ZHAN H B, et al. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions[J]. Water Research, 2013, 47(7): 2507-2522. doi: 10.1016/j.watres.2013.02.021

    [18] 谢海建, 陈云敏, 楼章华. 污染物通过有缺陷膜复合衬垫的一维运移解析解[J]. 中国科学: 技术科学, 2010, 40(5): 486-495. doi: 10.3969/j.issn.0253-2778.2010.05.0008

    XIE Haijian, CHEN Yunmin, LOU Zhanghua. Analytical solution of one-dimensional migration of pollutants through defective membrane composite liner[J]. Scientia Sinica (Technologica), 2010, 40(5): 486-495. (in Chinese) doi: 10.3969/j.issn.0253-2778.2010.05.0008

    [19]

    ROWE R K, QUIGLEY R M, BRACHMAN R W I, et al. Barrier Systems for Waste Disposal[M]. London and New York: E & FN Spon, 2004.

    [20]

    ROWE R K, ABDELATTY K. Modeling contaminant transport through composite liner with a hole in the geomembrane[J]. Canadian Geotechnical Journal, 2012, 49(7): 773-781. doi: 10.1139/t2012-038

    [21] 谢海建. 成层介质污染物的运移机理及衬垫系统防污性能研究[D]. 杭州: 浙江大学, 2008.

    XIE Haijian. A Study on Contaminant Transport in Layered Media and the Performance of Landfill Liner Systems[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)

    [22]

    ABATE J, WHITT W. A unified framework for numerically inverting Laplace transforms[J]. INFORMS Journal on Computing, 2006, 18(4): 408-421. doi: 10.1287/ijoc.1050.0137

    [23] 徐亚, 能昌信, 刘玉强, 等. 垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报, 2015, 9(9): 4558-4564. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

    XU Ya, NAI Changxin, LIU Yuqiang, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4558-4564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

    [24]

    ROWE R K, BRACHMAN R W I. Assessment of equivalence of composite liners[J]. Geosynthetics International, 2004, 11(4): 273-286. doi: 10.1680/gein.2004.11.4.273

    [25]

    ROWE R K, CHAPPEL M J, BRACHMAN R W I, et al. Field study of wrinkles in a geomembrane at a composite liner test site[J]. Canadian Geotechnical Journal, 2012, 49(10): 1196-1211. doi: 10.1139/t2012-083

    [26]

    ZHAN L T, CHEN C, WANG Y, et al. Failure probability assessment and parameter sensitivity analysis of a contaminant's transit time through a compacted clay liner[J]. Computers and Geotechnics, 2017, 86: 230-242. doi: 10.1016/j.compgeo.2017.01.014

    [27]

    SANGAM H P, ROWE R K. Migration of dilute aqueous organic pollutants through HDPE geomembranes[J]. Geotextiles and Geomembranes, 2001, 19(6): 329-357. doi: 10.1016/S0266-1144(01)00013-9

    [28]

    XIE H J, JIANG Y S, ZHANG C H, et al. Steady-state analytical models for performance assessment of landfill composite liners[J]. Environmental Science and Pollution Research, 2015, 22(16): 12198-12214. doi: 10.1007/s11356-015-4200-9

图(6)  /  表(1)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  51
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 网络出版日期:  2023-02-26

目录

    /

    返回文章
    返回